Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2016, Volume 80, Issue 2, Pages 417–441
DOI: https://doi.org/10.1070/IM8407
(Mi im8407)
 

This article is cited in 3 scientific papers (total in 3 papers)

Equivariant $K$-theory of regular compactifications: further developments

V. Uma

Indian Institute of Technology Madras
References:
Abstract: We describe the $\widetilde G\times \widetilde G$-equivariant $K$-ring of $X$, where $\widetilde G$ is a factorial covering of a connected complex reductive algebraic group $G$, and $X$ is a regular compactification of $G$. Furthermore, using the description of $K_{\widetilde G\times\widetilde G}(X)$, we describe the ordinary $K$-ring $K(X)$ as a free module (whose rank is equal to the cardinality of the Weyl group) over the $K$-ring of a toric bundle over $G/B$ whose fibre is equal to the toric variety $\overline{T}^{+}$ associated with a smooth subdivision of the positive Weyl chamber. This generalizes our previous work on the wonderful compactification (see [1]). We also give an explicit presentation of $K_{\widetilde G\times\widetilde G}(X)$ and $K(X)$ as algebras over $K_{\widetilde G\times\widetilde G}(\overline{G_{\operatorname{ad}}})$ and $K(\overline{G_{\operatorname{ad}}})$ respectively, where $\overline{G_{\operatorname{ad}}}$ is the wonderful compactification of the adjoint semisimple group $G_{\operatorname{ad}}$. In the case when $X$ is a regular compactification of $G_{\operatorname{ad}}$, we give a geometric interpretation of these presentations in terms of the equivariant and ordinary Grothendieck rings of a canonical toric bundle over $\overline{G_{\operatorname{ad}}}$.
Keywords: equivariant $K$-theory, regular compactification, wonderful compactification, toric bundle.
Received: 28.04.2015
Bibliographic databases:
Document Type: Article
UDC: 512.736+512.743
MSC: Primary 19L47; Secondary 14M25, 14M27, 14L10.
Language: English
Original paper language: Russian
Citation: V. Uma, “Equivariant $K$-theory of regular compactifications: further developments”, Izv. Math., 80:2 (2016), 417–441
Citation in format AMSBIB
\Bibitem{Uma16}
\by V.~Uma
\paper Equivariant $K$-theory of regular compactifications: further developments
\jour Izv. Math.
\yr 2016
\vol 80
\issue 2
\pages 417--441
\mathnet{http://mi.mathnet.ru//eng/im8407}
\crossref{https://doi.org/10.1070/IM8407}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3507382}
\zmath{https://zbmath.org/?q=an:06621176}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016IzMat..80..417U}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000378090300008}
\elib{https://elibrary.ru/item.asp?id=25707544}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84977660227}
Linking options:
  • https://www.mathnet.ru/eng/im8407
  • https://doi.org/10.1070/IM8407
  • https://www.mathnet.ru/eng/im/v80/i2/p139
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:329
    Russian version PDF:137
    English version PDF:10
    References:59
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024