Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2015, Volume 79, Issue 6, Pages 1157–1183
DOI: https://doi.org/10.1070/IM2015v079n06ABEH002776
(Mi im8399)
 

Embedding theorems for quasi-toric manifolds given by combinatorial data

V. M. Buchstabera, A. A. Kustarevb

a Steklov Mathematical Institute of Russian Academy of Sciences
b Faculty of Computer Science, National Research University "Higher School of Economics"
References:
Abstract: This paper is devoted to problems on equivariant embeddings of quasi-toric manifolds in Euclidean and projective spaces. We construct explicit embeddings and give bounds for the dimensions of the embeddings in terms of combinatorial data that determine such manifolds. We show how familiar results on complex projective varieties in toric geometry can be obtained under additional restrictions on the combinatorial data.
Keywords: equivariant embedding, moment-angle manifold, characteristic function.
Funding agency Grant number
Russian Science Foundation 14-11-00414
This work was supported by the Russian Science Foundation under grant no. 14-11-00414.
Received: 28.11.2015
Bibliographic databases:
Document Type: Article
UDC: 515.165.2
MSC: 57S15, 57R20
Language: English
Original paper language: Russian
Citation: V. M. Buchstaber, A. A. Kustarev, “Embedding theorems for quasi-toric manifolds given by combinatorial data”, Izv. Math., 79:6 (2015), 1157–1183
Citation in format AMSBIB
\Bibitem{BucKus15}
\by V.~M.~Buchstaber, A.~A.~Kustarev
\paper Embedding theorems for quasi-toric manifolds given by combinatorial data
\jour Izv. Math.
\yr 2015
\vol 79
\issue 6
\pages 1157--1183
\mathnet{http://mi.mathnet.ru//eng/im8399}
\crossref{https://doi.org/10.1070/IM2015v079n06ABEH002776}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438465}
\zmath{https://zbmath.org/?q=an:1360.57039}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015IzMat..79.1157B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000371441400003}
\elib{https://elibrary.ru/item.asp?id=24850002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84960517401}
Linking options:
  • https://www.mathnet.ru/eng/im8399
  • https://doi.org/10.1070/IM2015v079n06ABEH002776
  • https://www.mathnet.ru/eng/im/v79/i6/p65
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:537
    Russian version PDF:158
    English version PDF:13
    References:51
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024