Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2016, Volume 80, Issue 3, Pages 557–601
DOI: https://doi.org/10.1070/IM8378
(Mi im8378)
 

An analogue of the Littlewood–Paley theorem for orthoprojectors onto wavelet subspaces

S. N. Kudryavtsev

Dorodnitsyn Computing Centre of the Russian Academy of Sciences, Moscow
References:
Abstract: We prove an analogue of the Littlewood–Paley theorem for orthoprojectors onto wavelet subspaces corresponding to a non-isotropic multiresolution analysis generated by the tensor product of smooth scaling functions of one variable with sufficiently rapid decay at infinity.
Keywords: orthoprojector, wavelet subspaces, scaling function, multiresolution analysis, Littlewood–Paley theorem.
Received: 05.04.2015
Revised: 06.07.2015
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2016, Volume 80, Issue 3, Pages 103–150
DOI: https://doi.org/10.4213/im8378
Bibliographic databases:
Document Type: Article
UDC: 517.5
MSC: 42B25, 42C40
Language: English
Original paper language: Russian
Citation: S. N. Kudryavtsev, “An analogue of the Littlewood–Paley theorem for orthoprojectors onto wavelet subspaces”, Izv. RAN. Ser. Mat., 80:3 (2016), 103–150; Izv. Math., 80:3 (2016), 557–601
Citation in format AMSBIB
\Bibitem{Kud16}
\by S.~N.~Kudryavtsev
\paper An analogue of the Littlewood--Paley theorem for orthoprojectors onto wavelet subspaces
\jour Izv. RAN. Ser. Mat.
\yr 2016
\vol 80
\issue 3
\pages 103--150
\mathnet{http://mi.mathnet.ru/im8378}
\crossref{https://doi.org/10.4213/im8378}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3507390}
\zmath{https://zbmath.org/?q=an:1354.42034}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016IzMat..80..557K}
\elib{https://elibrary.ru/item.asp?id=26414230}
\transl
\jour Izv. Math.
\yr 2016
\vol 80
\issue 3
\pages 557--601
\crossref{https://doi.org/10.1070/IM8378}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000384880300007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84987654832}
Linking options:
  • https://www.mathnet.ru/eng/im8378
  • https://doi.org/10.1070/IM8378
  • https://www.mathnet.ru/eng/im/v80/i3/p103
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:501
    Russian version PDF:67
    English version PDF:18
    References:75
    First page:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024