Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2018, Volume 82, Issue 3, Pages 494–511
DOI: https://doi.org/10.1070/IM8376
(Mi im8376)
 

This article is cited in 1 scientific paper (total in 1 paper)

Representation of solutions of evolution equations on a ramified surface by Feynman formulae

V. A. Dubravina

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We obtain solutions of parabolic second-order differential equations for functions in the class $L_1(K)$ defined on a ramified surface $K$. By using Chernoff's theorem, we prove that such solutions, whenever they exist, can be represented by Lagrangian Feynman formulae, that is, they can be written as limits of integrals over Cartesian powers of the configuration space as the number of factors tends to infinity.
Keywords: Feynman formula, parabolic differential equation, ramified surface, Chernoff's theorem.
Received: 02.04.2015
Revised: 21.07.2017
Bibliographic databases:
Document Type: Article
UDC: 517.1
MSC: 81S40, 81Q30, 46T12
Language: English
Original paper language: Russian
Citation: V. A. Dubravina, “Representation of solutions of evolution equations on a ramified surface by Feynman formulae”, Izv. Math., 82:3 (2018), 494–511
Citation in format AMSBIB
\Bibitem{Dub18}
\by V.~A.~Dubravina
\paper Representation of solutions of evolution equations on a~ramified surface by Feynman formulae
\jour Izv. Math.
\yr 2018
\vol 82
\issue 3
\pages 494--511
\mathnet{http://mi.mathnet.ru//eng/im8376}
\crossref{https://doi.org/10.1070/IM8376}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3807874}
\zmath{https://zbmath.org/?q=an:1393.81022}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018IzMat..82..494D}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000437922000003}
\elib{https://elibrary.ru/item.asp?id=34940558}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85049844392}
Linking options:
  • https://www.mathnet.ru/eng/im8376
  • https://doi.org/10.1070/IM8376
  • https://www.mathnet.ru/eng/im/v82/i3/p49
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024