Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2015, Volume 79, Issue 6, Pages 1097–1110
DOI: https://doi.org/10.1070/IM2015v079n06ABEH002774
(Mi im8369)
 

This article is cited in 6 scientific papers (total in 6 papers)

Characteristic properties and uniform non-amenability of $n$-periodic products of groups

S. I. Adiana, Varuzhan Atabekyanb

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b Yerevan State University
References:
Abstract: We prove that $n$-periodic products (introduced by the first author in 1976) are uniquely characterized by certain quite specific properties. Using these properties, we prove that if a non-cyclic subgroup $H$ of the $n$-periodic product of a given family of groups is not conjugate to any subgroup of the product's components, then $H$ contains a subgroup isomorphic to the free Burnside group $B(2,n)$. This means that $H$ contains the free periodic groups $B(m,n)$ of any rank $m>2$, which lie in $B(2,n)$ ([1], Russian p. 26). Moreover, if $H$ is finitely generated, then it is uniformly non-amenable. We also describe all finite subgroups of $n$-periodic products.
Keywords: $n$-periodic product, free periodic group, simple group, amenable group, uniform non-amenability, exponential growth.
Funding agency Grant number
Russian Foundation for Basic Research 15-51-05012 Арм_а
15RF-054
This work was carried out with the financial support of the Russian Foundation for Basic Research and the RA MES State Committee of Science in the framework of the joint scientific programme (projects 15-51-05012-Arm\_a and 15RF-054 respectively).
Received: 25.03.2015
Revised: 16.05.2015
Bibliographic databases:
Document Type: Article
UDC: 512.54+512.543.5
MSC: 20F05, 20F50, 20E06
Language: English
Original paper language: Russian
Citation: S. I. Adian, Varuzhan Atabekyan, “Characteristic properties and uniform non-amenability of $n$-periodic products of groups”, Izv. Math., 79:6 (2015), 1097–1110
Citation in format AMSBIB
\Bibitem{AdiAta15}
\by S.~I.~Adian, Varuzhan~Atabekyan
\paper Characteristic properties and uniform non-amenability of $n$-periodic products of groups
\jour Izv. Math.
\yr 2015
\vol 79
\issue 6
\pages 1097--1110
\mathnet{http://mi.mathnet.ru//eng/im8369}
\crossref{https://doi.org/10.1070/IM2015v079n06ABEH002774}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438463}
\zmath{https://zbmath.org/?q=an:1360.20018}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015IzMat..79.1097A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000371441400001}
\elib{https://elibrary.ru/item.asp?id=24850000}
Linking options:
  • https://www.mathnet.ru/eng/im8369
  • https://doi.org/10.1070/IM2015v079n06ABEH002774
  • https://www.mathnet.ru/eng/im/v79/i6/p3
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:789
    Russian version PDF:156
    English version PDF:20
    References:69
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024