Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2016, Volume 80, Issue 6, Pages 1084–1093
DOI: https://doi.org/10.1070/IM8351
(Mi im8351)
 

This article is cited in 2 scientific papers (total in 2 papers)

$p$-adic Brownian motion

E. I. Zelenov

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
References:
Abstract: We define $p$-adic Brownian motion (Wiener process) and study its properties. We construct a presentation of the trajectories of this process by their series expansions with respect to van der Put's basis and show that they are nowhere differentiable functions satisfying the $p$-adic Lipschitz condition of order $1$. We define the $p$-adic Wiener measure on the space of continuous functions and study its properties.
Keywords: $p$-adic numbers, Wiener process, Brownian motion, van der Put's basis, trajectories of the Wiener process.
Funding agency Grant number
Russian Science Foundation 14-11-00687
This work is supported by the Russian Science Foundation under grant 14-11-00687.
Received: 03.02.2015
Revised: 05.07.2015
Bibliographic databases:
Document Type: Article
UDC: 519.21
Language: English
Original paper language: Russian
Citation: E. I. Zelenov, “$p$-adic Brownian motion”, Izv. Math., 80:6 (2016), 1084–1093
Citation in format AMSBIB
\Bibitem{Zel16}
\by E.~I.~Zelenov
\paper $p$-adic Brownian motion
\jour Izv. Math.
\yr 2016
\vol 80
\issue 6
\pages 1084--1093
\mathnet{http://mi.mathnet.ru//eng/im8351}
\crossref{https://doi.org/10.1070/IM8351}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3588814}
\zmath{https://zbmath.org/?q=an:1373.60141}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016IzMat..80.1084Z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000393621500004}
\elib{https://elibrary.ru/item.asp?id=27484923}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85011697858}
Linking options:
  • https://www.mathnet.ru/eng/im8351
  • https://doi.org/10.1070/IM8351
  • https://www.mathnet.ru/eng/im/v80/i6/p92
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:403
    Russian version PDF:80
    English version PDF:24
    References:60
    First page:21
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024