|
Quasi-greedy property of subsystems of the multivariate Haar system
S. L. Gogyan Institute of Mathematics, National Academy of Sciences of Armenia, Yerevan
Abstract:
We describe all sets of dyadic cubes $\Delta=\{\Delta_k\}$ for which
a subsystem of the multivariate Haar system
$\{h_i\colon\operatorname{supp}({h_i})\in\Delta\}$ is quasi-greedy
in $L_1(0,1)^d$. We prove that the greedy algorithm provides a good rate
of convergence for those subsystems.
Keywords:
greedy algorithm, quasi-greedy basis, Haar system in $L^1$, subsystem of the Haar system.
Received: 29.01.2015
Citation:
S. L. Gogyan, “Quasi-greedy property of subsystems of the multivariate Haar system”, Izv. RAN. Ser. Mat., 80:3 (2016), 23–30; Izv. Math., 80:3 (2016), 481–488
Linking options:
https://www.mathnet.ru/eng/im8346https://doi.org/10.1070/IM8346 https://www.mathnet.ru/eng/im/v80/i3/p23
|
Statistics & downloads: |
Abstract page: | 405 | Russian version PDF: | 59 | English version PDF: | 11 | References: | 58 | First page: | 23 |
|