Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2016, Volume 80, Issue 3, Pages 481–488
DOI: https://doi.org/10.1070/IM8346
(Mi im8346)
 

Quasi-greedy property of subsystems of the multivariate Haar system

S. L. Gogyan

Institute of Mathematics, National Academy of Sciences of Armenia, Yerevan
References:
Abstract: We describe all sets of dyadic cubes $\Delta=\{\Delta_k\}$ for which a subsystem of the multivariate Haar system $\{h_i\colon\operatorname{supp}({h_i})\in\Delta\}$ is quasi-greedy in $L_1(0,1)^d$. We prove that the greedy algorithm provides a good rate of convergence for those subsystems.
Keywords: greedy algorithm, quasi-greedy basis, Haar system in $L^1$, subsystem of the Haar system.
Received: 29.01.2015
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2016, Volume 80, Issue 3, Pages 23–30
DOI: https://doi.org/10.4213/im8346
Bibliographic databases:
Document Type: Article
UDC: 517.51
MSC: Primary 41A65; Secondary 42A10
Language: English
Original paper language: Russian
Citation: S. L. Gogyan, “Quasi-greedy property of subsystems of the multivariate Haar system”, Izv. RAN. Ser. Mat., 80:3 (2016), 23–30; Izv. Math., 80:3 (2016), 481–488
Citation in format AMSBIB
\Bibitem{Gog16}
\by S.~L.~Gogyan
\paper Quasi-greedy property of subsystems of the multivariate Haar system
\jour Izv. RAN. Ser. Mat.
\yr 2016
\vol 80
\issue 3
\pages 23--30
\mathnet{http://mi.mathnet.ru/im8346}
\crossref{https://doi.org/10.4213/im8346}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3507385}
\zmath{https://zbmath.org/?q=an:06629494}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2016IzMat..80..481G}
\elib{https://elibrary.ru/item.asp?id=26414225}
\transl
\jour Izv. Math.
\yr 2016
\vol 80
\issue 3
\pages 481--488
\crossref{https://doi.org/10.1070/IM8346}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000384880300002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84987668106}
Linking options:
  • https://www.mathnet.ru/eng/im8346
  • https://doi.org/10.1070/IM8346
  • https://www.mathnet.ru/eng/im/v80/i3/p23
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:405
    Russian version PDF:59
    English version PDF:11
    References:58
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024