Abstract:
A classification of the compact invariant sets of a dynamical system in a locally compact complete metric space is given with respect to the properties of stability, attraction, isolation, and others.
This publication is cited in the following 5 articles:
B. S. Kalitin, “On a Problem of V. V. Nemytskii”, Math. Notes, 113:2 (2023), 200–211
M. V. Shamolin, “Obobschennaya zadacha kontrolya v zadachakh diagnostiki”, Materialy Voronezhskoi mezhdunarodnoi vesennei matematicheskoi shkoly «Sovremennye metody teorii kraevykh zadach. Pontryaginskie chteniya–XXXII», Voronezh, 3–9 maya 2021 g. Chast 2, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 209, VINITI RAN, M., 2022, 117–126
M. V. Shamolin, “Struktura diagnosticheskogo prostranstva v zadachakh differentsialnoi diagnostiki”, Geometriya, mekhanika i differentsialnye uravneniya, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 211, VINITI RAN, M., 2022, 75–82
B. S. Kalitine, “Properties of Neighborhoods of Attractors of Dynamical Systems”, Math. Notes, 109:5 (2021), 748–758
Kalitin B., “On the Structure of a Neighborhood of Stable Compact Invariant Sets”, Differ. Equ., 41:8 (2005), 1115–1125