Russian Academy of Sciences. Izvestiya Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Izvestiya Mathematics, 1994, Volume 43, Issue 3, Pages 493–516
DOI: https://doi.org/10.1070/IM1994v043n03ABEH001577
(Mi im828)
 

The degree of the top Segre class of the standard vector bundle on the Hilbert scheme $\operatorname{Hilb}^4S$ of an algebraic surface $S$

T. L. Troshina
References:
Abstract: In the present paper we compute the degree of the top Segre class $s_8(\mathscr E_D^4)$ of the standard vector bundle $\mathscr E_D^4=q_{\ast}p^{\ast}\mathscr O_s(D)$ on the Hilbert scheme $\operatorname{Hilb}^4S$ of an algebraic surface $S$, where $D$ is a divisor on $S$ and $S\stackrel{p}{\longleftarrow}Z_4\stackrel{q}{\longrightarrow}\operatorname{Hilb}^4S$ are the natural projections of the universal cycle $Z_4\subset S\times\operatorname{Hilb}^4S$. This degree is a polynomial with rational coefficients in invariants $x$, $y$, $z$, $w$ of the pair $(S,\mathscr O_S(D))$, where $x=(D^2)$, $y=(D\cdot K_S)$, $z=s_2(S)$, $w=(K^2_S)$.
Received: 24.11.1992
Bibliographic databases:
UDC: 512.723
MSC: 14F05, 14J10, 32L10
Language: English
Original paper language: Russian
Citation: T. L. Troshina, “The degree of the top Segre class of the standard vector bundle on the Hilbert scheme $\operatorname{Hilb}^4S$ of an algebraic surface $S$”, Russian Acad. Sci. Izv. Math., 43:3 (1994), 493–516
Citation in format AMSBIB
\Bibitem{Tro93}
\by T.~L.~Troshina
\paper The degree of the top Segre class of the standard vector bundle on the Hilbert scheme $\operatorname{Hilb}^4S$ of an algebraic surface~$S$
\jour Russian Acad. Sci. Izv. Math.
\yr 1994
\vol 43
\issue 3
\pages 493--516
\mathnet{http://mi.mathnet.ru//eng/im828}
\crossref{https://doi.org/10.1070/IM1994v043n03ABEH001577}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1256569}
\zmath{https://zbmath.org/?q=an:0824.14004}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1994IzMat..43..493T}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1994QK21500006}
Linking options:
  • https://www.mathnet.ru/eng/im828
  • https://doi.org/10.1070/IM1994v043n03ABEH001577
  • https://www.mathnet.ru/eng/im/v57/i6/p106
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:1272
    Russian version PDF:76
    English version PDF:15
    References:54
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024