|
The degree of the top Segre class of the standard vector bundle on the Hilbert scheme $\operatorname{Hilb}^4S$ of an algebraic surface $S$
T. L. Troshina
Abstract:
In the present paper we compute the degree of the top Segre class $s_8(\mathscr E_D^4)$ of the standard vector bundle $\mathscr E_D^4=q_{\ast}p^{\ast}\mathscr O_s(D)$ on the Hilbert scheme $\operatorname{Hilb}^4S$ of an algebraic surface $S$, where $D$ is a divisor on $S$ and $S\stackrel{p}{\longleftarrow}Z_4\stackrel{q}{\longrightarrow}\operatorname{Hilb}^4S$ are the natural projections of the universal cycle $Z_4\subset S\times\operatorname{Hilb}^4S$. This degree is a polynomial with rational coefficients in invariants $x$, $y$, $z$, $w$ of the pair $(S,\mathscr O_S(D))$, where $x=(D^2)$, $y=(D\cdot K_S)$, $z=s_2(S)$, $w=(K^2_S)$.
Received: 24.11.1992
Citation:
T. L. Troshina, “The degree of the top Segre class of the standard vector bundle on the Hilbert scheme $\operatorname{Hilb}^4S$ of an algebraic surface $S$”, Russian Acad. Sci. Izv. Math., 43:3 (1994), 493–516
Linking options:
https://www.mathnet.ru/eng/im828https://doi.org/10.1070/IM1994v043n03ABEH001577 https://www.mathnet.ru/eng/im/v57/i6/p106
|
Statistics & downloads: |
Abstract page: | 1272 | Russian version PDF: | 76 | English version PDF: | 15 | References: | 54 | First page: | 2 |
|