Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2015, Volume 79, Issue 3, Pages 512–553
DOI: https://doi.org/10.1070/IM2015v079n03ABEH002752
(Mi im8299)
 

This article is cited in 6 scientific papers (total in 6 papers)

Infinite-dimensional $p$-adic groups, semigroups of double cosets, and inner functions on Bruhat–Tits buildings

Yu. A. Neretinabc

a Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center), Moscow
b University of Vienna
c M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We construct $p$-adic analogues of operator colligations and their characteristic functions. Consider a $p$-adic group $\mathbf G=\mathrm{GL}(\alpha+k\infty,\mathbb Q_p)$, a subgroup $L=\mathrm O(k\infty,\mathbb Z_p)$ of $\mathbf G$ and a subgroup $\mathbf K=\mathrm O(\infty,\mathbb Z_p)$ which is diagonally embedded in $L$. We show that the space $\Gamma=\mathbf K\setminus\mathbf G/\mathbf K$ of double cosets admits the structure of a semigroup and acts naturally on the space of $\mathbf K$-fixed vectors of any unitary representation of $\mathbf G$. With each double coset we associate a ‘characteristic function’ that sends a certain Bruhat–Tits building to another building (the buildings are finite-dimensional) in such a way that the image of the distinguished boundary lies in the distinguished boundary. The second building admits the structure of a (Nazarov) semigroup, and the product in $\Gamma$ corresponds to the pointwise product of characteristic functions.
Keywords: Bruhat–Tits buildings, lattices, Weil representation, characteristic functions, simplicial maps.
Funding agency Grant number
Austrian Science Fund P22122
P25142
This paper was written with the financial support of FWF (grants P22122 and P25142).
Received: 21.09.2014
Bibliographic databases:
Document Type: Article
UDC: 512.625.5+512.741.5+512.816.4
MSC: 22E50, 51E24
Language: English
Original paper language: Russian
Citation: Yu. A. Neretin, “Infinite-dimensional $p$-adic groups, semigroups of double cosets, and inner functions on Bruhat–Tits buildings”, Izv. Math., 79:3 (2015), 512–553
Citation in format AMSBIB
\Bibitem{Ner15}
\by Yu.~A.~Neretin
\paper Infinite-dimensional $p$-adic groups, semigroups of double cosets, and inner functions on Bruhat--Tits buildings
\jour Izv. Math.
\yr 2015
\vol 79
\issue 3
\pages 512--553
\mathnet{http://mi.mathnet.ru//eng/im8299}
\crossref{https://doi.org/10.1070/IM2015v079n03ABEH002752}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3397413}
\zmath{https://zbmath.org/?q=an:06470381}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015IzMat..79..512N}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000356834500004}
\elib{https://elibrary.ru/item.asp?id=23780146}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84937693964}
Linking options:
  • https://www.mathnet.ru/eng/im8299
  • https://doi.org/10.1070/IM2015v079n03ABEH002752
  • https://www.mathnet.ru/eng/im/v79/i3/p87
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:970
    Russian version PDF:169
    English version PDF:21
    References:71
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024