Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2015, Volume 79, Issue 5, Pages 859–893
DOI: https://doi.org/10.1070/IM2015v079n05ABEH002764
(Mi im8294)
 

This article is cited in 5 scientific papers (total in 5 papers)

On a class of random perturbations of the hierarchical Laplacian

A. D. Bendikova, A. A. Grigor'yanb, S. A. Molchanovc, G. P. Samorodnitskyd

a Institute of Mathematics, Wrocław University
b Bielefeld University, Department of Mathematics
c Department of Mathematics, University of North Carolina Charlotte
d School of Operations Research and Information Engineering, Cornell University
References:
Abstract: Let $(X,d)$ be a locally compact separable ultrametric space. Given a measure $m$ on $X$ and a function $C(B)$ defined on the set $B$ of all balls of positive measure of $X$, we consider the hierarchical Laplacian $L=L_{C}$. The operator $L$ acts on $L^{2}(X,m)$. It is essentially self-adjoint and has a pure point spectrum. By choosing a family $\{\varepsilon (B)\}$ of independent identically distributed random variables, we define the perturbed function $C(B,\omega)$ and the perturbed hierarchical Laplacian $L^{\omega }=L_{C(\omega)}$. We study the arithmetic means $\bar{\lambda }(\omega)$ of the eigenvalues of $L^{\omega }$. Under some mild assumptions the normalized arithmetic means $( \bar{\lambda }-\mathbb{E}\bar{\lambda })/\sigma [\bar{\lambda }]$ converge to $N(0,1)$ in distribution. We also give examples when the normal convergence fails. We prove the existence of an integrated density of states. Introducing an empirical point process $N^{\omega }$ for the eigenvalues of $L^{\omega }$ and assuming that the density of states exists and is continuous, we prove that the finite-dimensional distributions of $N^{\omega }$ converge to those of the Poisson point process. As an example we consider random perturbations of the Vladimirov operator acting on $L^{2}(X,m)$, where $X=\mathbb{Q}_{p}$ is the ring of $p$-adic numbers and $m$ is the Haar measure.
Keywords: ultrametric measure space, field of $p$-adic numbers, hierarchical Laplacian, fractional derivative, Vladimirov Laplacian, point spectrum, integrated density of states, Bernoulli convolutions, Erdős problem, point process, Poisson convergence.
Funding agency Grant number
National Science Centre (Narodowe Centrum Nauki) NCN DEC-2012/05/B/ST 1/00613
Deutsche Forschungsgemeinschaft SFB 701
National Science Foundation
The first author was supported by the Polish National Centre of Sciences (grant DEC-2012/05/B/ST 1/00613). The second author was supported by the German Research Council (grant SFB 701). The third and fourth authors were supported by the NSF (USA).
Received: 21.08.2014
Revised: 01.12.2014
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2015, Volume 79, Issue 5, Pages 3–38
DOI: https://doi.org/10.4213/im8294
Bibliographic databases:
Document Type: Article
UDC: 517.983+517.1+519.2
Language: English
Original paper language: Russian
Citation: A. D. Bendikov, A. A. Grigor'yan, S. A. Molchanov, G. P. Samorodnitsky, “On a class of random perturbations of the hierarchical Laplacian”, Izv. RAN. Ser. Mat., 79:5 (2015), 3–38; Izv. Math., 79:5 (2015), 859–893
Citation in format AMSBIB
\Bibitem{BenGriMol15}
\by A.~D.~Bendikov, A.~A.~Grigor'yan, S.~A.~Molchanov, G.~P.~Samorodnitsky
\paper On a class of random perturbations of the hierarchical Laplacian
\jour Izv. RAN. Ser. Mat.
\yr 2015
\vol 79
\issue 5
\pages 3--38
\mathnet{http://mi.mathnet.ru/im8294}
\crossref{https://doi.org/10.4213/im8294}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438453}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015IzMat..79..859B}
\elib{https://elibrary.ru/item.asp?id=24849989}
\transl
\jour Izv. Math.
\yr 2015
\vol 79
\issue 5
\pages 859--893
\crossref{https://doi.org/10.1070/IM2015v079n05ABEH002764}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000367372500001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84948406997}
Linking options:
  • https://www.mathnet.ru/eng/im8294
  • https://doi.org/10.1070/IM2015v079n05ABEH002764
  • https://www.mathnet.ru/eng/im/v79/i5/p3
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:594
    Russian version PDF:156
    English version PDF:10
    References:58
    First page:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024