Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2015, Volume 79, Issue 2, Pages 288–310
DOI: https://doi.org/10.1070/IM2015v079n02ABEH002743
(Mi im8253)
 

This article is cited in 12 scientific papers (total in 12 papers)

A strengthening of a theorem of Bourgain and Kontorovich. III

I. D. Kan

Moscow Aviation Institute (State University of Aerospace Technologies)
References:
Abstract: We prove that the set of positive integers contains a positive proportion of denominators of the finite continued fractions all of whose partial quotients belong to the alphabet $\{1,2,3,4,10\}$. The corresponding theorem was previousy known only for the alphabet $\{1,2,3,4,5\}$ and for alphabets of larger cardinality.
Keywords: continued fraction, continuant, trigonometric sum, Zaremba's conjecture.
Funding agency Grant number
Russian Foundation for Basic Research 12-01-00681-a
The research was financially supported by RFBR (grant no. 12-01-00681-a).
Received: 16.05.2014
Bibliographic databases:
Document Type: Article
UDC: 511.321+511.31
MSC: Primary 11J70; Secondary 11A55, 11L07
Language: English
Original paper language: Russian
Citation: I. D. Kan, “A strengthening of a theorem of Bourgain and Kontorovich. III”, Izv. Math., 79:2 (2015), 288–310
Citation in format AMSBIB
\Bibitem{Kan15}
\by I.~D.~Kan
\paper A~strengthening of a~theorem of Bourgain and Kontorovich. III
\jour Izv. Math.
\yr 2015
\vol 79
\issue 2
\pages 288--310
\mathnet{http://mi.mathnet.ru//eng/im8253}
\crossref{https://doi.org/10.1070/IM2015v079n02ABEH002743}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3352591}
\zmath{https://zbmath.org/?q=an:06443924}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015IzMat..79..288K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000353635400004}
\elib{https://elibrary.ru/item.asp?id=23421423}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928746312}
Linking options:
  • https://www.mathnet.ru/eng/im8253
  • https://doi.org/10.1070/IM2015v079n02ABEH002743
  • https://www.mathnet.ru/eng/im/v79/i2/p77
    Cycle of papers
    This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:594
    Russian version PDF:173
    English version PDF:16
    References:83
    First page:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024