Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2015, Volume 79, Issue 4, Pages 710–739
DOI: https://doi.org/10.1070/IM2015v079n04ABEH002759
(Mi im8249)
 

This article is cited in 2 scientific papers (total in 2 papers)

Extended tensor products and an operator-valued spectral mapping theorem

V. G. Kurbatova, I. V. Kurbatovab

a Voronezh State University
b N. E. Zhukovskiy and Yu. A. Gagarin Air Force Academy, Voronezh
References:
Abstract: We introduce the notion of an extended tensor product of Banach spaces $X$ and $Y$. It is defined as a triple consisting of a Banach space $X\boxtimes Y$ and two full subalgebras $\mathbf B_0(X)$ and $\mathbf B_0(Y)$ of the algebras $\mathbf B(X)$ and $\mathbf B(Y)$ of all bounded linear operators on $X$ and $Y$ respectively. It is assumed that $X\boxtimes Y$ is an extension of the ordinary tensor product $X\otimes Y$, and the functionals on $X^*\otimes Y^*$ and operators on $\mathbf B_0(X)\otimes\mathbf B_0(Y)$ have a canonical extension from $X\otimes Y$ to $X\boxtimes Y$. Every pseudo-resolvent $\mathbf B_0(Y)$ generates a functional calculus that sends analytic $\mathbf B_0(X)$-valued functions in a neighbourhood of the singular set of the pseudo-resolvent to operators on $X\boxtimes Y$. We prove an analogue of the spectral mapping theorem for such a functional calculus.
Keywords: tensor product, pseudo-resolvent, spectral mapping theorem.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 1306
Russian Foundation for Basic Research 13-01-00378
14-11-00305
The first author’s work was done with the financial support of the Russian Ministry of Science and Education (state request no. 1306). The second author was supported by RFBR (grants nos. 13-01-00378, 14-11-00305).
Received: 29.04.2014
Bibliographic databases:
Document Type: Article
UDC: 512.647.3+517.984.3
MSC: 46B28, 47A10, 47A60
Language: English
Original paper language: Russian
Citation: V. G. Kurbatov, I. V. Kurbatova, “Extended tensor products and an operator-valued spectral mapping theorem”, Izv. Math., 79:4 (2015), 710–739
Citation in format AMSBIB
\Bibitem{KurKur15}
\by V.~G.~Kurbatov, I.~V.~Kurbatova
\paper Extended tensor products and an operator-valued spectral mapping theorem
\jour Izv. Math.
\yr 2015
\vol 79
\issue 4
\pages 710--739
\mathnet{http://mi.mathnet.ru//eng/im8249}
\crossref{https://doi.org/10.1070/IM2015v079n04ABEH002759}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3397420}
\zmath{https://zbmath.org/?q=an:06503849}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015IzMat..79..710K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000360463600004}
\elib{https://elibrary.ru/item.asp?id=24073705}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84940416897}
Linking options:
  • https://www.mathnet.ru/eng/im8249
  • https://doi.org/10.1070/IM2015v079n04ABEH002759
  • https://www.mathnet.ru/eng/im/v79/i4/p71
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:1012
    Russian version PDF:206
    English version PDF:24
    References:129
    First page:126
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024