Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2015, Volume 79, Issue 4, Pages 668–697
DOI: https://doi.org/10.1070/IM2015v079n04ABEH002757
(Mi im8246)
 

This article is cited in 6 scientific papers (total in 6 papers)

Sharp estimates for the moduli of continuity of metric projections onto weakly convex sets

G. E. Ivanov

Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region
References:
Abstract: We study the dependence of metric projections on the following three parameters: the point projected, the set to which we are projecting, and the norm (generally speaking, non-symmetric) that determines the metric. We obtain sharp estimates for the moduli of continuity of metric projections onto convex and weakly convex sets in Banach spaces. We also estimate these moduli in terms of the moduli of convexity and smoothness of the space (or the quasi-ball).
Keywords: metric projection, weakly convex sets.
Funding agency Grant number
Russian Foundation for Basic Research 13-01-00295
This work was done with the financial support of RFBR (grant no. 13-01-00295).
Received: 22.04.2014
Revised: 07.11.2014
Bibliographic databases:
Document Type: Article
UDC: 517.982.256
MSC: 49J52, 52A30
Language: English
Original paper language: Russian
Citation: G. E. Ivanov, “Sharp estimates for the moduli of continuity of metric projections onto weakly convex sets”, Izv. Math., 79:4 (2015), 668–697
Citation in format AMSBIB
\Bibitem{Iva15}
\by G.~E.~Ivanov
\paper Sharp estimates for the moduli of continuity of metric projections onto weakly convex sets
\jour Izv. Math.
\yr 2015
\vol 79
\issue 4
\pages 668--697
\mathnet{http://mi.mathnet.ru//eng/im8246}
\crossref{https://doi.org/10.1070/IM2015v079n04ABEH002757}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3397418}
\zmath{https://zbmath.org/?q=an:06503847}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015IzMat..79..668I}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000360463600002}
\elib{https://elibrary.ru/item.asp?id=24073702}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84940529457}
Linking options:
  • https://www.mathnet.ru/eng/im8246
  • https://doi.org/10.1070/IM2015v079n04ABEH002757
  • https://www.mathnet.ru/eng/im/v79/i4/p27
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:594
    Russian version PDF:198
    English version PDF:22
    References:54
    First page:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024