Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2015, Volume 79, Issue 4, Pages 838–858
DOI: https://doi.org/10.1070/IM2015v079n04ABEH002763
(Mi im8240)
 

This article is cited in 15 scientific papers (total in 15 papers)

Summability of trigonometric Fourier series at $d$-points and a generalization of the Abel–Poisson method

R. M. Trigub

Donetsk National University
References:
Abstract: We study the convergence of linear means of the Fourier series $\sum_{k=-\infty}^{+\infty}\!\lambda_{k,\varepsilon}\hat{f}_ke^{ikx}$ of a function $f\in L_1[-\pi,\pi]$ to $f(x)$ as $\varepsilon\searrow0$ at all points at which the derivative $\bigl(\int_0^xf(t)\,dt\bigr)'$ exists (i. e. at the $d$-points). Sufficient conditions for the convergence are stated in terms of the factors $\{\lambda_{k,\varepsilon}\}$ and, in the case of $\lambda_{k,\varepsilon}=\varphi(\varepsilon k)$, in terms of the condition that the functions $\varphi$ and $x\varphi'(x)$ belong to the Wiener algebra $A(\mathbb R)$. We also study a new problem concerning the convergence of means of the Abel–Poisson type, $\sum_{k=-\infty}^\infty r^{\psi(|k|)}\hat{f}_ke^{ikx}$, as $r\nearrow1$ depending on the growth of the function $\psi\nearrow+\infty$ on the semi-axis. It turns out that $\psi$ cannot differ substantially from a power-law function.
Keywords: Fourier series, Banach algebra of absolutely convergent Fourier integrals, multiplier, Abel–Poisson method.
Received: 10.04.2014
Bibliographic databases:
Document Type: Article
UDC: 517.51
MSC: 42A24
Language: English
Original paper language: Russian
Citation: R. M. Trigub, “Summability of trigonometric Fourier series at $d$-points and a generalization of the Abel–Poisson method”, Izv. Math., 79:4 (2015), 838–858
Citation in format AMSBIB
\Bibitem{Tri15}
\by R.~M.~Trigub
\paper Summability of trigonometric Fourier series at $d$-points and a~generalization of the Abel--Poisson method
\jour Izv. Math.
\yr 2015
\vol 79
\issue 4
\pages 838--858
\mathnet{http://mi.mathnet.ru//eng/im8240}
\crossref{https://doi.org/10.1070/IM2015v079n04ABEH002763}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3397424}
\zmath{https://zbmath.org/?q=an:06503853}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015IzMat..79..838T}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000360463600008}
\elib{https://elibrary.ru/item.asp?id=24073710}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84940381357}
Linking options:
  • https://www.mathnet.ru/eng/im8240
  • https://doi.org/10.1070/IM2015v079n04ABEH002763
  • https://www.mathnet.ru/eng/im/v79/i4/p205
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024