Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2015, Volume 79, Issue 1, Pages 18–39
DOI: https://doi.org/10.1070/IM2015v079n01ABEH002732
(Mi im8215)
 

This article is cited in 21 scientific papers (total in 23 papers)

Distribution of real algebraic numbers of arbitrary degree in short intervals

V. I. Bernika, F. Götzeb

a Institute of Mathematics of the National Academy of Sciences of Belarus
b Bielefeld University, Department of Mathematics
References:
Abstract: We consider real algebraic numbers $\alpha$ of degree $\operatorname{deg}\alpha=n$ and height $H=H(\alpha)$. There are intervals $I\subset\mathbb{R}$ of length $|I|$ whose interiors contain no real algebraic numbers $\alpha$ of any degree with $H(\alpha)<\frac12|I|^{-1}$. We prove that one can always find a constant $c_1=c_1(n)$ such that if $Q$ is a positive integer and $Q>c_1|I|^{-1}$, then the interior of $I$ contains at least $c_2(n)Q^{n+1}|I|$ real algebraic numbers $\alpha$ with $\operatorname{deg}\alpha=n$ and $H(\alpha)\le Q$. We use this result to solve a problem of Bugeaud on the regularity of the set of real algebraic numbers in short intervals.
Keywords: algebraic numbers, regular systems.
Received: 31.01.2014
Revised: 09.10.2015
Bibliographic databases:
Document Type: Article
UDC: 511.42
MSC: 11J83, 11K55
Language: English
Original paper language: Russian
Citation: V. I. Bernik, F. Götze, “Distribution of real algebraic numbers of arbitrary degree in short intervals”, Izv. Math., 79:1 (2015), 18–39
Citation in format AMSBIB
\Bibitem{BerGot15}
\by V.~I.~Bernik, F.~G\"otze
\paper Distribution of real algebraic numbers of arbitrary degree in short intervals
\jour Izv. Math.
\yr 2015
\vol 79
\issue 1
\pages 18--39
\mathnet{http://mi.mathnet.ru//eng/im8215}
\crossref{https://doi.org/10.1070/IM2015v079n01ABEH002732}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3352580}
\zmath{https://zbmath.org/?q=an:06428103}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015IzMat..79...18B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000350754500002}
\elib{https://elibrary.ru/item.asp?id=23421412}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84924308232}
Linking options:
  • https://www.mathnet.ru/eng/im8215
  • https://doi.org/10.1070/IM2015v079n01ABEH002732
  • https://www.mathnet.ru/eng/im/v79/i1/p21
    Remarks
    This publication is cited in the following 23 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:680
    Russian version PDF:233
    English version PDF:29
    References:75
    First page:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024