Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2015, Volume 79, Issue 2, Pages 311–345
DOI: https://doi.org/10.1070/IM2015v079n02ABEH002744
(Mi im8198)
 

This article is cited in 2 scientific papers (total in 2 papers)

The spectral method and ergodic theorems for general Markov chains

S. V. Nagaev

Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
References:
Abstract: We study the ergodic properties of Markov chains with an arbitrary state space and prove a geometric ergodic theorem. The method of the proof is new: it may be described as an operator method. Our main result is an ergodic theorem for Harris–Markov chains in the case when the return time to some fixed set has finite expectation. Our conditions for the transition function are more general than those used by Athreya–Ney and Nummelin. Unlike them, we impose restrictions not on the original transition function but on the transition function of an embedded Markov chain constructed from the return times to the fixed set mentioned above. The proof uses the spectral theory of linear operators on a Banach space.
Keywords: embedded Markov chain, uniform ergodicity, resolvent, spectral method, stationary distribution.
Funding agency Grant number
Russian Foundation for Basic Research 12-01-00238-a
This paper was written with the financial support of RFBR (grant no. 12-01-00238-a).
Received: 16.12.2013
Revised: 20.10.2014
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2015, Volume 79, Issue 2, Pages 101–136
DOI: https://doi.org/10.4213/im8198
Bibliographic databases:
Document Type: Article
UDC: 519.21+517.98
MSC: 60J10, 47A35
Language: English
Original paper language: Russian
Citation: S. V. Nagaev, “The spectral method and ergodic theorems for general Markov chains”, Izv. RAN. Ser. Mat., 79:2 (2015), 101–136; Izv. Math., 79:2 (2015), 311–345
Citation in format AMSBIB
\Bibitem{Nag15}
\by S.~V.~Nagaev
\paper The spectral method and ergodic theorems for general Markov chains
\jour Izv. RAN. Ser. Mat.
\yr 2015
\vol 79
\issue 2
\pages 101--136
\mathnet{http://mi.mathnet.ru/im8198}
\crossref{https://doi.org/10.4213/im8198}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3352592}
\zmath{https://zbmath.org/?q=an:06443925}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015IzMat..79..311N}
\elib{https://elibrary.ru/item.asp?id=23421424}
\transl
\jour Izv. Math.
\yr 2015
\vol 79
\issue 2
\pages 311--345
\crossref{https://doi.org/10.1070/IM2015v079n02ABEH002744}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000353635400005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928725326}
Linking options:
  • https://www.mathnet.ru/eng/im8198
  • https://doi.org/10.1070/IM2015v079n02ABEH002744
  • https://www.mathnet.ru/eng/im/v79/i2/p101
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:568
    Russian version PDF:175
    English version PDF:8
    References:81
    First page:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024