Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2015, Volume 79, Issue 2, Pages 346–374
DOI: https://doi.org/10.1070/IM2015v079n02ABEH002745
(Mi im8179)
 

This article is cited in 10 scientific papers (total in 10 papers)

The dissipative property of a cubic non-linear Schrödinger equation

P. I. Naumkin

National Autonomous University of Mexico, Institute of Mathematics
References:
Abstract: We study the large-time behaviour of solutions of the Cauchy problem for a non-linear Schrödinger equation. We consider the interaction between the resonance term and other types of non-linearity. We prove that solutions exist globally in time and find a large-time asymptotic representation for them. We show that the decay of solutions in the far region has the same order as in the linear case, while the solutions in the short-range region acquire an additional logarithmic decay, which is slower than in the case when there is no resonance term in the original equation.
Keywords: Schrödinger equation, cubic non-linearity, large-time asymptotics.
Received: 22.10.2013
Revised: 04.07.2014
Bibliographic databases:
Document Type: Article
UDC: 517.956.8+517.953
MSC: 35Q55, 35C20, 35K15
Language: English
Original paper language: Russian
Citation: P. I. Naumkin, “The dissipative property of a cubic non-linear Schrödinger equation”, Izv. Math., 79:2 (2015), 346–374
Citation in format AMSBIB
\Bibitem{Nau15}
\by P.~I.~Naumkin
\paper The dissipative property of a~cubic non-linear Schr\"odinger equation
\jour Izv. Math.
\yr 2015
\vol 79
\issue 2
\pages 346--374
\mathnet{http://mi.mathnet.ru//eng/im8179}
\crossref{https://doi.org/10.1070/IM2015v079n02ABEH002745}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3352593}
\zmath{https://zbmath.org/?q=an:06443926}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015IzMat..79..346N}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000353635400006}
\elib{https://elibrary.ru/item.asp?id=23421425}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928746487}
Linking options:
  • https://www.mathnet.ru/eng/im8179
  • https://doi.org/10.1070/IM2015v079n02ABEH002745
  • https://www.mathnet.ru/eng/im/v79/i2/p137
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024