Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2014, Volume 78, Issue 6, Pages 1120–1137
DOI: https://doi.org/10.1070/IM2014v078n06ABEH002723
(Mi im8174)
 

General Franklin system as a basis in $B^1[0,1]$

G. G. Gevorkyan

Yerevan State University
References:
Abstract: For a general Franklin system $\{f_n\}_{n=0}^{\infty}$ generated by an admissible sequence $\mathcal T$, we obtain necessary and sufficient conditions on $\mathcal T$ under which the corresponding system is a basis or an unconditional basis in $B^1[0,1]$.
Keywords: general Franklin system, basis, unconditional basis, spaces $B^1$$H^1$.
Received: 09.10.2013
Revised: 04.04.2014
Bibliographic databases:
Document Type: Article
UDC: 517.51
MSC: 41A15, 42C10, 46E30
Language: English
Original paper language: Russian
Citation: G. G. Gevorkyan, “General Franklin system as a basis in $B^1[0,1]$”, Izv. Math., 78:6 (2014), 1120–1137
Citation in format AMSBIB
\Bibitem{Gev14}
\by G.~G.~Gevorkyan
\paper General Franklin system as a~basis in~$B^1[0,1]$
\jour Izv. Math.
\yr 2014
\vol 78
\issue 6
\pages 1120--1137
\mathnet{http://mi.mathnet.ru//eng/im8174}
\crossref{https://doi.org/10.1070/IM2014v078n06ABEH002723}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3309413}
\zmath{https://zbmath.org/?q=an:1308.41008}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014IzMat..78.1120G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000346821600004}
\elib{https://elibrary.ru/item.asp?id=22834338}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919634991}
Linking options:
  • https://www.mathnet.ru/eng/im8174
  • https://doi.org/10.1070/IM2014v078n06ABEH002723
  • https://www.mathnet.ru/eng/im/v78/i6/p65
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024