Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2014, Volume 78, Issue 6, Pages 1195–1206
DOI: https://doi.org/10.1070/IM2014v078n06ABEH002726
(Mi im8166)
 

On invariants of free restricted Lie algebras

Victor Petrogradskyab, I. A. Subbotinb

a University of Brasilia
b Ulyanovsk State University, Faculty of Mathematics and Information Technologies
References:
Abstract: We prove that the invariant subalgebra $L^G$ is infinitely generated, where $L=L(X)$ is the free restricted Lie algebra of finite rank $k$ with free generating set $X=\{x_1,\dots,x_k\}$ over an arbitrary field of positive characteristic and $G$ is a non-trivial finite group of homogeneous automorphisms of $L(X)$. We show that the sequence $|Y_n|$, $n\geqslant1$, grows exponentially with base $k$, where $Y=\bigcup_{n=1}^\infty Y_n$ is a free homogeneous generating set of $L^G$ and all the elements of $Y_n$ are of degree $n$ in $X$, $n\geqslant1$. We prove that the radius of convergence of the generating function $\mathcal H(Y,t)=\sum_{n=1}^\infty|Y_n|t^n$ is equal to $1/k$ and find an asymptotic formula for the growth of $\mathcal H(Y,t)$ as $t\to1/k-0$.
Keywords: free Lie algebras, restricted Lie algebras, generating functions, invariants, group actions.
Received: 27.08.2013
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2014, Volume 78, Issue 6, Pages 141–152
DOI: https://doi.org/10.4213/im8166
Bibliographic databases:
Document Type: Article
UDC: 512.55
Language: English
Original paper language: Russian
Citation: Victor Petrogradsky, I. A. Subbotin, “On invariants of free restricted Lie algebras”, Izv. RAN. Ser. Mat., 78:6 (2014), 141–152; Izv. Math., 78:6 (2014), 1195–1206
Citation in format AMSBIB
\Bibitem{PetSub14}
\by Victor~Petrogradsky, I.~A.~Subbotin
\paper On invariants of free restricted Lie algebras
\jour Izv. RAN. Ser. Mat.
\yr 2014
\vol 78
\issue 6
\pages 141--152
\mathnet{http://mi.mathnet.ru/im8166}
\crossref{https://doi.org/10.4213/im8166}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3309416}
\zmath{https://zbmath.org/?q=an:06399043}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014IzMat..78.1195P}
\elib{https://elibrary.ru/item.asp?id=22834341}
\transl
\jour Izv. Math.
\yr 2014
\vol 78
\issue 6
\pages 1195--1206
\crossref{https://doi.org/10.1070/IM2014v078n06ABEH002726}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000346821600007}
\elib{https://elibrary.ru/item.asp?id=24020865}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919623885}
Linking options:
  • https://www.mathnet.ru/eng/im8166
  • https://doi.org/10.1070/IM2014v078n06ABEH002726
  • https://www.mathnet.ru/eng/im/v78/i6/p141
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:457
    Russian version PDF:161
    English version PDF:17
    References:62
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024