Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2014, Volume 78, Issue 5, Pages 922–936
DOI: https://doi.org/10.1070/IM2014v078n05ABEH002713
(Mi im8146)
 

This article is cited in 18 scientific papers (total in 18 papers)

Alternative algebras admitting derivations with invertible values and invertible derivations

I. B. Kaygorodovab, Yu. S. Popovac

a Sobolev Institute of Mathematics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk
b Universidade de São Paulo, Instituto de Matemática e Estatística
c Novosibirsk State University
References:
Abstract: We prove an analogue of the Bergen–Herstein–Lanski theorem for alternative algebras: describe all alternative algebras that admit derivations with invertible values. We also prove an analogue of Moens' theorem for alternative algebras (a finite-dimensional alternative algebra over a field of characteristic zero is nilpotent if and only if it admits an invertible Leibniz derivation).
Keywords: derivation, alternative algebra, nilpotent algebra.
Received: 15.07.2013
Bibliographic databases:
Document Type: Article
UDC: 512.554.5
MSC: 17A36, 17D05
Language: English
Original paper language: Russian
Citation: I. B. Kaygorodov, Yu. S. Popov, “Alternative algebras admitting derivations with invertible values and invertible derivations”, Izv. Math., 78:5 (2014), 922–936
Citation in format AMSBIB
\Bibitem{KayPop14}
\by I.~B.~Kaygorodov, Yu.~S.~Popov
\paper Alternative algebras admitting derivations with invertible values and invertible derivations
\jour Izv. Math.
\yr 2014
\vol 78
\issue 5
\pages 922--936
\mathnet{http://mi.mathnet.ru//eng/im8146}
\crossref{https://doi.org/10.1070/IM2014v078n05ABEH002713}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3308645}
\zmath{https://zbmath.org/?q=an:06381144}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014IzMat..78..922K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000344454800004}
\elib{https://elibrary.ru/item.asp?id=22834329}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84892373397}
Linking options:
  • https://www.mathnet.ru/eng/im8146
  • https://doi.org/10.1070/IM2014v078n05ABEH002713
  • https://www.mathnet.ru/eng/im/v78/i5/p75
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:605
    Russian version PDF:268
    English version PDF:19
    References:92
    First page:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024