Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2014, Volume 78, Issue 4, Pages 744–757
DOI: https://doi.org/10.1070/IM2014v078n04ABEH002705
(Mi im8143)
 

This article is cited in 1 scientific paper (total in 1 paper)

Liouville's equation as a Schrödinger equation

V. V. Kozlov

Steklov Mathematical Institute of the Russian Academy of Sciences
References:
Abstract: We show that every non-negative solution of Liouville's equation for an arbitrary (possibly non-Hamiltonian) dynamical system admits a factorization $\psi\psi^*$, where $\psi$ satisfies a Schrödinger equation of special form. The corresponding quantum system is obtained by Weyl quantization of a Hamiltonian system whose Hamiltonian is linear in the momenta. We discuss the structure of the spectrum of the special Schrödinger equation on a multidimensional torus and show that the eigenfunctions may have finite smoothness in the analytic case. Our generalized solutions of the Schrödinger equation are natural examples of non-selfadjoint extensions of Hermitian differential operators. We give conditions for the existence of a smooth invariant measure of a dynamical system. They are expressed in terms of stability conditions for the conjugate equations of variations.
Keywords: Weyl quantization, Hermitian operator, non-selfadjoint extension, invariant manifold, invariant measure.
Received: 04.07.2013
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2014, Volume 78, Issue 4, Pages 109–122
DOI: https://doi.org/10.4213/im8143
Bibliographic databases:
Document Type: Article
UDC: 517.43
Language: English
Original paper language: Russian
Citation: V. V. Kozlov, “Liouville's equation as a Schrödinger equation”, Izv. RAN. Ser. Mat., 78:4 (2014), 109–122; Izv. Math., 78:4 (2014), 744–757
Citation in format AMSBIB
\Bibitem{Koz14}
\by V.~V.~Kozlov
\paper Liouville's equation as a~Schr\"odinger equation
\jour Izv. RAN. Ser. Mat.
\yr 2014
\vol 78
\issue 4
\pages 109--122
\mathnet{http://mi.mathnet.ru/im8143}
\crossref{https://doi.org/10.4213/im8143}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3288403}
\zmath{https://zbmath.org/?q=an:06358164}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014IzMat..78..744K}
\elib{https://elibrary.ru/item.asp?id=21826429}
\transl
\jour Izv. Math.
\yr 2014
\vol 78
\issue 4
\pages 744--757
\crossref{https://doi.org/10.1070/IM2014v078n04ABEH002705}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000344454600004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84907353862}
Linking options:
  • https://www.mathnet.ru/eng/im8143
  • https://doi.org/10.1070/IM2014v078n04ABEH002705
  • https://www.mathnet.ru/eng/im/v78/i4/p109
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:1410
    Russian version PDF:849
    English version PDF:49
    References:108
    First page:79
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024