Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2014, Volume 78, Issue 5, Pages 855–876
DOI: https://doi.org/10.1070/IM2014v078n05ABEH002710
(Mi im8121)
 

This article is cited in 32 scientific papers (total in 33 papers)

A geometric description of domains whose Hardy constant is equal to 1/4

F. G. Avkhadiev

Kazan (Volga Region) Federal University
References:
Abstract: We give a geometric description of families of non-convex planar and spatial domains in which the following Hardy inequality holds: the Dirichlet integral of any smooth compactly supported function $f$ on the domain is greater than or equal to one quarter of the integral of $f^2(x)/\delta^2(x)$, where $\delta(x)$ is the distance from $x$ to the boundary of the domain. Our geometric description is based analytically on new one-dimensional Hardy-type inequalities with special weights and on new constants related to these inequalities and hypergeometric functions.
Keywords: Hardy inequalities, non-convex domains, hypergeometric functions, torsional rigidity.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00351-a
12-01-00636-a
Received: 16.04.2013
Revised: 10.02.2014
Bibliographic databases:
Document Type: Article
UDC: 517.5+517.518.28
MSC: 26D10, 33C20
Language: English
Original paper language: Russian
Citation: F. G. Avkhadiev, “A geometric description of domains whose Hardy constant is equal to 1/4”, Izv. Math., 78:5 (2014), 855–876
Citation in format AMSBIB
\Bibitem{Avk14}
\by F.~G.~Avkhadiev
\paper A geometric description of domains whose Hardy constant is equal to~1/4
\jour Izv. Math.
\yr 2014
\vol 78
\issue 5
\pages 855--876
\mathnet{http://mi.mathnet.ru//eng/im8121}
\crossref{https://doi.org/10.1070/IM2014v078n05ABEH002710}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3308642}
\zmath{https://zbmath.org/?q=an:06381141}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014IzMat..78..855A}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000344454800001}
\elib{https://elibrary.ru/item.asp?id=22834326}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84908530156}
Linking options:
  • https://www.mathnet.ru/eng/im8121
  • https://doi.org/10.1070/IM2014v078n05ABEH002710
  • https://www.mathnet.ru/eng/im/v78/i5/p3
  • This publication is cited in the following 33 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:960
    Russian version PDF:202
    English version PDF:14
    References:167
    First page:137
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024