Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2014, Volume 78, Issue 5, Pages 1036–1059
DOI: https://doi.org/10.1070/IM2014v078n05ABEH002718
(Mi im8117)
 

This article is cited in 7 scientific papers (total in 7 papers)

Some special series in ultraspherical polynomials and their approximation properties

I. I. Sharapudinov

Daghestan Scientific Centre of the Russian Academy of Sciences, Makhachkala
References:
Abstract: Using the explicit form of a limiting ultraspherical series $\sum_{k=0}^\infty f_k^{-1}\widehat P_k^{-1}(x)$, which was established by us in [1], we consider new, more general, special series in ultraspherical Jacobi polynomials and their approximation properties. We show that as an approximation tool, these series compare favourably with Fourier series in Jacobi polynomials. At the same time, they admit a simple construction, which in important particular cases enables one to use the fast Fourier transform for the numerical realization of their partial sums.
Keywords: Jacobi polynomial, special series in ultraspherical polynomials, approximation by partial sums of special series.
Funding agency Grant number
Russian Foundation for Basic Research 10-01-00191
Received: 20.03.2013
Revised: 24.06.2013
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2014, Volume 78, Issue 5, Pages 201–224
DOI: https://doi.org/10.4213/im8117
Bibliographic databases:
Document Type: Article
UDC: 517.538
MSC: 33C45, 41A58, 42C10
Language: English
Original paper language: Russian
Citation: I. I. Sharapudinov, “Some special series in ultraspherical polynomials and their approximation properties”, Izv. Math., 78:5 (2014), 1036–1059
Citation in format AMSBIB
\Bibitem{Sha14}
\by I.~I.~Sharapudinov
\paper Some special series in ultraspherical polynomials and their approximation properties
\jour Izv. Math.
\yr 2014
\vol 78
\issue 5
\pages 1036--1059
\mathnet{http://mi.mathnet.ru//eng/im8117}
\crossref{https://doi.org/10.1070/IM2014v078n05ABEH002718}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3308650}
\zmath{https://zbmath.org/?q=an:06381149}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014IzMat..78.1036S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000344454800009}
\elib{https://elibrary.ru/item.asp?id=22834334}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84908514595}
Linking options:
  • https://www.mathnet.ru/eng/im8117
  • https://doi.org/10.1070/IM2014v078n05ABEH002718
  • https://www.mathnet.ru/eng/im/v78/i5/p201
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:590
    Russian version PDF:211
    English version PDF:4
    References:52
    First page:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024