Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2014, Volume 78, Issue 5, Pages 877–901
DOI: https://doi.org/10.1070/IM2014v078n05ABEH002711
(Mi im8116)
 

Modified Bessel ${\mathbf P}$-integrals and $\mathbf P$-derivatives and their properties

S. S. Volosivets

Saratov State University named after N. G. Chernyshevsky
References:
Abstract: We study the modified Bessel ${\mathbf P}$-integral, whose properties are similar to those of the Bessel potential, and the modified Bessel ${\mathbf P}$-derivative. These operators are inverse to each other. We prove analogues of the embedding theorems of Hardy, Littlewood, Stein, Zygmund and Lizorkin concerning the images of $L^p(\mathbb R)$ under the action of Bessel potentials. We give applications of the Bessel integral and derivative to the integrability of the ${\mathbf P}$-adic Fourier transform and to approximation theory (an embedding theorem of Ul'yanov type).
Keywords: Bessel potential, modified Bessel $\mathbf P$-derivative, $\mathbf P$-adic Hölder–Besov spaces, $\mathbf P$-adic distributions, $\mathbf P$-adic BMO space, embedding theorem of Ul'yanov type.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 1.1520.2014/K
Received: 06.03.2013
Revised: 17.07.2013
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 2014, Volume 78, Issue 5, Pages 27–52
DOI: https://doi.org/10.4213/im8116
Bibliographic databases:
Document Type: Article
UDC: 517.518
Language: English
Original paper language: Russian
Citation: S. S. Volosivets, “Modified Bessel ${\mathbf P}$-integrals and $\mathbf P$-derivatives and their properties”, Izv. RAN. Ser. Mat., 78:5 (2014), 27–52; Izv. Math., 78:5 (2014), 877–901
Citation in format AMSBIB
\Bibitem{Vol14}
\by S.~S.~Volosivets
\paper Modified Bessel ${\mathbf P}$-integrals and $\mathbf P$-derivatives and their properties
\jour Izv. RAN. Ser. Mat.
\yr 2014
\vol 78
\issue 5
\pages 27--52
\mathnet{http://mi.mathnet.ru/im8116}
\crossref{https://doi.org/10.4213/im8116}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3308643}
\zmath{https://zbmath.org/?q=an:06381142}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014IzMat..78..877V}
\elib{https://elibrary.ru/item.asp?id=22834327}
\transl
\jour Izv. Math.
\yr 2014
\vol 78
\issue 5
\pages 877--901
\crossref{https://doi.org/10.1070/IM2014v078n05ABEH002711}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000344454800002}
\elib{https://elibrary.ru/item.asp?id=23997871}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84908554440}
Linking options:
  • https://www.mathnet.ru/eng/im8116
  • https://doi.org/10.1070/IM2014v078n05ABEH002711
  • https://www.mathnet.ru/eng/im/v78/i5/p27
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:576
    Russian version PDF:168
    English version PDF:16
    References:88
    First page:27
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024