Loading [MathJax]/jax/output/SVG/config.js
Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2014, Volume 78, Issue 2, Pages 354–374
DOI: https://doi.org/10.1070/IM2014v078n02ABEH002690
(Mi im8078)
 

This article is cited in 10 scientific papers (total in 10 papers)

Multiplicative sufficient conditions for Fourier multipliers

Yu. S. Kolomoitsev

Institute of Applied Mathematics and Mechanics, National Academy of Sciences of Ukraine, Donetsk
References:
Abstract: We get new sufficient conditions for Fourier multipliers in Hardy spaces $H_p(\mathbb R^n)$, $0<p\le 1$, and $L_p(\mathbb R^n)$, $1\le p\le\infty$. Being of a multiplicative character, these conditions are stated in terms of the joint behaviour of ‘norms’ of functions in $L_q(\mathbb R^n)$ and Besov spaces $B_{r,\infty}^s(\mathbb R^n)$.
Keywords: Fourier multipliers, Hardy spaces, Besov spaces, Wiener algebra.
Received: 30.11.2012
Bibliographic databases:
Document Type: Article
UDC: 517.5
MSC: 42B15, 42B30, 42B35
Language: English
Original paper language: Russian
Citation: Yu. S. Kolomoitsev, “Multiplicative sufficient conditions for Fourier multipliers”, Izv. Math., 78:2 (2014), 354–374
Citation in format AMSBIB
\Bibitem{Kol14}
\by Yu.~S.~Kolomoitsev
\paper Multiplicative sufficient conditions for Fourier multipliers
\jour Izv. Math.
\yr 2014
\vol 78
\issue 2
\pages 354--374
\mathnet{http://mi.mathnet.ru/eng/im8078}
\crossref{https://doi.org/10.1070/IM2014v078n02ABEH002690}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3234820}
\zmath{https://zbmath.org/?q=an:06301843}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014IzMat..78..354K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000338994500005}
\elib{https://elibrary.ru/item.asp?id=21826412}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84899536857}
Linking options:
  • https://www.mathnet.ru/eng/im8078
  • https://doi.org/10.1070/IM2014v078n02ABEH002690
  • https://www.mathnet.ru/eng/im/v78/i2/p145
  • This publication is cited in the following 10 articles:
    1. Kolomoitsev Yu., “P Approximation By Quasi-Interpolation Operators and Smolyak'S Algorithm”, J. Complex., 69 (2022), 101601  crossref  mathscinet  isi
    2. Fang J., Li H., Zhao J., “Multilinear and Multiparameter Spectral Multipliers on Homogeneous Besov and Triebel-Lizorkin Spaces on Lie Groups of Polynomial Growth”, J. Geom. Anal., 32:3 (2022), 100  crossref  mathscinet  isi
    3. Yu. Kolomoitsev, M. Skopina, “Uniform approximation by multivariate quasi-projection operators”, Anal.Math.Phys., 12:2 (2022)  crossref
    4. Kolomoitsev Yu., Prestin J., “Approximation Properties of Periodic Multivariate Quasi-Interpolation Operators”, J. Approx. Theory, 270 (2021), 105631  crossref  mathscinet  isi
    5. Kolomoitsev Yu., Skopina M., “Approximation By Multivariate Quasi-Projection Operators and Fourier Multipliers”, Appl. Math. Comput., 400 (2021), 125955  crossref  mathscinet  isi
    6. Kolomoitsev Yu., Skopina M., “Approximation By Sampling-Type Operators in Lp-Spaces”, Math. Meth. Appl. Sci., 43:16 (2020), 9358–9374  crossref  mathscinet  isi
    7. Fang J., Zhao J., “H-P Boundedness of Multilinear Spectral Multipliers on Stratified Groups”, J. Geom. Anal., 30:1 (2020), 197–222  crossref  mathscinet  isi
    8. Yurii Kolomoitsev, Tetiana Lomako, Applied and Numerical Harmonic Analysis, Topics in Classical and Modern Analysis, 2019, 183  crossref
    9. Yu. Kolomoitsev, E. Liflyand, “On weighted conditions for the absolute convergence of Fourier integrals”, J. Math. Anal. Appl., 456:1 (2017), 163–176  crossref  mathscinet  zmath  isi  scopus
    10. S. Krol, “Fourier multipliers on the real Hardy spaces”, Archiv der Mathematik, 106:5 (2016), 457–470  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:667
    Russian version PDF:269
    English version PDF:28
    References:124
    First page:49
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025