Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2014, Volume 78, Issue 4, Pages 758–808
DOI: https://doi.org/10.1070/IM2014v078n04ABEH002706
(Mi im8068)
 

This article is cited in 4 scientific papers (total in 4 papers)

On comparison theorems for quasi-linear elliptic inequalities with a special account of the geometry of the domain

A. A. Kon'kov

M. V. Lomonosov Moscow State University
References:
Abstract: We consider non-negative solutions of quasi-linear elliptic inequalities $\operatorname{div}A(x,Du)\geqslant0$ in $\Omega_{R_0,R_1}$, $0\leqslant R_0<R_1\le\infty$, where $\Omega_{R_0,R_1}=\{x\in\Omega\colon R_0<|x|<R_1\}$, $\Omega\subset{\mathbb R}^n$ ($n\geqslant2$) is a non-empty open set, and the function $A\colon\Omega_{R_0,R_1}\times{\mathbb R}^n\to{\mathbb R}^n$ satisfies the ellipticity conditions $C_1|\xi|^p\le\xi A(x,\xi)$, $|A(x,\xi)|\le C_2|\xi|^{p-1}$, $C_1,C_2>0$, $p>1$, for almost all $x\in\Omega_{R_0,R_1}$ and all $\xi\in{\mathbb R}^n$. Our bounds for solutions take the geometry of $\Omega$ into account.
Keywords: non-linear elliptic operators, unbounded domains, capacity.
Funding agency Grant number
Russian Foundation for Basic Research 11-01-12018-офи-м
Received: 15.11.2012
Revised: 22.08.2013
Bibliographic databases:
Document Type: Article
UDC: 517.91
Language: English
Original paper language: Russian
Citation: A. A. Kon'kov, “On comparison theorems for quasi-linear elliptic inequalities with a special account of the geometry of the domain”, Izv. Math., 78:4 (2014), 758–808
Citation in format AMSBIB
\Bibitem{Kon14}
\by A.~A.~Kon'kov
\paper On comparison theorems for quasi-linear elliptic inequalities with a~special account of the geometry of the domain
\jour Izv. Math.
\yr 2014
\vol 78
\issue 4
\pages 758--808
\mathnet{http://mi.mathnet.ru//eng/im8068}
\crossref{https://doi.org/10.1070/IM2014v078n04ABEH002706}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3288404}
\zmath{https://zbmath.org/?q=an:1301.35224}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014IzMat..78..758K}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000344454600005}
\elib{https://elibrary.ru/item.asp?id=21826430}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84907319523}
Linking options:
  • https://www.mathnet.ru/eng/im8068
  • https://doi.org/10.1070/IM2014v078n04ABEH002706
  • https://www.mathnet.ru/eng/im/v78/i4/p123
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:501
    Russian version PDF:158
    English version PDF:12
    References:59
    First page:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024