|
This article is cited in 4 scientific papers (total in 4 papers)
On comparison theorems for quasi-linear elliptic inequalities with a special account of the geometry of the domain
A. A. Kon'kov M. V. Lomonosov Moscow State University
Abstract:
We consider non-negative solutions of quasi-linear elliptic inequalities $\operatorname{div}A(x,Du)\geqslant0$ in $\Omega_{R_0,R_1}$, $0\leqslant R_0<R_1\le\infty$, where $\Omega_{R_0,R_1}=\{x\in\Omega\colon R_0<|x|<R_1\}$, $\Omega\subset{\mathbb R}^n$ ($n\geqslant2$) is a non-empty open set, and the function $A\colon\Omega_{R_0,R_1}\times{\mathbb R}^n\to{\mathbb R}^n$ satisfies the ellipticity conditions $C_1|\xi|^p\le\xi A(x,\xi)$, $|A(x,\xi)|\le C_2|\xi|^{p-1}$, $C_1,C_2>0$, $p>1$, for almost all $x\in\Omega_{R_0,R_1}$ and all $\xi\in{\mathbb R}^n$. Our bounds for solutions take the geometry of $\Omega$ into account.
Keywords:
non-linear elliptic operators, unbounded domains, capacity.
Received: 15.11.2012 Revised: 22.08.2013
Citation:
A. A. Kon'kov, “On comparison theorems for quasi-linear elliptic inequalities with a special account of the geometry of the domain”, Izv. Math., 78:4 (2014), 758–808
Linking options:
https://www.mathnet.ru/eng/im8068https://doi.org/10.1070/IM2014v078n04ABEH002706 https://www.mathnet.ru/eng/im/v78/i4/p123
|
Statistics & downloads: |
Abstract page: | 501 | Russian version PDF: | 158 | English version PDF: | 12 | References: | 59 | First page: | 23 |
|