Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2014, Volume 78, Issue 6, Pages 1105–1119
DOI: https://doi.org/10.1070/IM2014v078n06ABEH002722
(Mi im8066)
 

This article is cited in 5 scientific papers (total in 5 papers)

The asymptotic limit of an integro-differential equation modelling complex systems

C. Biancaa, M. Ferrarab, L. Guerrinic

a Paris Sorbonne University
b Universitá Mediterranea di Reggio Calabria
c Department of Mathematics, University of Bologna
References:
Abstract: This paper is devoted to the asymptotic analysis of a mathematical framework that has recently been proposed for modelling complex systems in the applied sciences under the action of an external force field. This framework consists in an integro-differential kinetic equation coupled with a Gaussian isokinetic thermostat. The asymptotic limit obtained here using low-field scaling shows the emergence of diffusive behaviour on a macroscopic scale.
Keywords: integro-differential equation, low-field limit, velocity-jump process, active particles, kinetic theory.
Funding agency Grant number
Agence Nationale de la Recherche ANR T-KiNeT
Received: 18.09.2012
Revised: 28.12.2013
Bibliographic databases:
Document Type: Article
UDC: 517.968.74
Language: English
Original paper language: Russian
Citation: C. Bianca, M. Ferrara, L. Guerrini, “The asymptotic limit of an integro-differential equation modelling complex systems”, Izv. Math., 78:6 (2014), 1105–1119
Citation in format AMSBIB
\Bibitem{BiaFerGue14}
\by C.~Bianca, M.~Ferrara, L.~Guerrini
\paper The asymptotic limit of an integro-differential equation modelling complex systems
\jour Izv. Math.
\yr 2014
\vol 78
\issue 6
\pages 1105--1119
\mathnet{http://mi.mathnet.ru//eng/im8066}
\crossref{https://doi.org/10.1070/IM2014v078n06ABEH002722}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3309412}
\zmath{https://zbmath.org/?q=an:06399039}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014IzMat..78.1105B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000346821600003}
\elib{https://elibrary.ru/item.asp?id=22834337}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84919734093}
Linking options:
  • https://www.mathnet.ru/eng/im8066
  • https://doi.org/10.1070/IM2014v078n06ABEH002722
  • https://www.mathnet.ru/eng/im/v78/i6/p49
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:428
    Russian version PDF:145
    English version PDF:6
    References:74
    First page:44
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024