Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2014, Volume 78, Issue 2, Pages 251–267
DOI: https://doi.org/10.1070/IM2014v078n02ABEH002687
(Mi im8062)
 

This article is cited in 2 scientific papers (total in 2 papers)

Global stability of travelling wave fronts for non-local diffusion equations with delay

X. Wang, G. Lv

Henan University
References:
Abstract: This paper is concerned with the global stability of travelling wave fronts for non-local diffusion equations with delay. We prove that the non-critical travelling wave fronts are globally exponentially stable under perturbations in some exponentially weighted $L^\infty$-spaces. Moreover, we obtain the decay rates of $\sup_{x\in\mathbb{R}}|u(x,t)-\varphi(x+ct)|$ using weighted energy estimates.
Keywords: stability, non-local reaction-diffusion equations, delay, travelling wave fronts, weighted energy estimate.
Funding agency Grant number
National Natural Science Foundation of China NSFC 11226168
11171064
11226168
Natural Science Foundation of Jiangsu Province BK2011583
Received: 28.09.2012
Revised: 20.01.2013
Bibliographic databases:
Document Type: Article
UDC: 517.95
Language: English
Original paper language: Russian
Citation: X. Wang, G. Lv, “Global stability of travelling wave fronts for non-local diffusion equations with delay”, Izv. Math., 78:2 (2014), 251–267
Citation in format AMSBIB
\Bibitem{WanLv14}
\by X.~Wang, G.~Lv
\paper Global stability of travelling wave fronts for non-local diffusion equations with delay
\jour Izv. Math.
\yr 2014
\vol 78
\issue 2
\pages 251--267
\mathnet{http://mi.mathnet.ru//eng/im8062}
\crossref{https://doi.org/10.1070/IM2014v078n02ABEH002687}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3234817}
\zmath{https://zbmath.org/?q=an:06301840}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014IzMat..78..251W}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000338994500002}
\elib{https://elibrary.ru/item.asp?id=21826409}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84899525517}
Linking options:
  • https://www.mathnet.ru/eng/im8062
  • https://doi.org/10.1070/IM2014v078n02ABEH002687
  • https://www.mathnet.ru/eng/im/v78/i2/p43
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:329
    Russian version PDF:135
    English version PDF:13
    References:74
    First page:43
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024