Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2014, Volume 78, Issue 1, Pages 90–105
DOI: https://doi.org/10.1070/IM2014v078n01ABEH002681
(Mi im8048)
 

This article is cited in 6 scientific papers (total in 6 papers)

On the convergence of multiple Haar series

G. G. Oniani

Akaki Tsereteli State University, Kutaisi
References:
Abstract: We prove that the rectangular and spherical partial sums of the multiple Fourier–Haar series of an individual summable function may behave differently at almost every point, although it is known that they behave in the same way from the point of view of almost-everywhere convergence in the scale of integral classes: $L(\ln^+L)^{n-1}$ is the best class in both cases. We also find optimal additional conditions under which the spherical convergence of a multiple Fourier–Haar series (general Haar series, lacunary series) follows from its convergence by rectangles, and prove that these conditions are indeed optimal.
Keywords: multiple Haar series, convergence by rectangles, spherical convergence, lacunary series.
Received: 27.08.2012
Revised: 15.12.2012
Bibliographic databases:
Document Type: Article
UDC: 517.52
MSC: 42C40, 40B05, 40F05
Language: English
Original paper language: Russian
Citation: G. G. Oniani, “On the convergence of multiple Haar series”, Izv. Math., 78:1 (2014), 90–105
Citation in format AMSBIB
\Bibitem{Oni14}
\by G.~G.~Oniani
\paper On the convergence of multiple Haar series
\jour Izv. Math.
\yr 2014
\vol 78
\issue 1
\pages 90--105
\mathnet{http://mi.mathnet.ru//eng/im8048}
\crossref{https://doi.org/10.1070/IM2014v078n01ABEH002681}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3204660}
\zmath{https://zbmath.org/?q=an:1288.42009}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014IzMat..78...90O}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000332236500005}
\elib{https://elibrary.ru/item.asp?id=21276261}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84894877637}
Linking options:
  • https://www.mathnet.ru/eng/im8048
  • https://doi.org/10.1070/IM2014v078n01ABEH002681
  • https://www.mathnet.ru/eng/im/v78/i1/p99
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:696
    Russian version PDF:219
    English version PDF:17
    References:133
    First page:58
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024