|
Generation of modules and transcendence degree of zero-cycles
S. O. Gorchinskiy Steklov Mathematical Institute of the Russian Academy of Sciences
Abstract:
We construct an example of a regular algebra over $\mathbb C$
of dimension $d$ and a projective module of rank $r$ over this algebra which
is not generated by $d+r-1$ elements. This strengthens Swan's well-known
example over the field of real numbers.
Keywords:
modules over rings, Chow groups.
Received: 02.07.2012 Revised: 09.11.2012
Citation:
S. O. Gorchinskiy, “Generation of modules and transcendence degree of zero-cycles”, Izv. RAN. Ser. Mat., 77:4 (2013), 55–58; Izv. Math., 77:4 (2013), 696–699
Linking options:
https://www.mathnet.ru/eng/im8023https://doi.org/10.1070/IM2013v077n04ABEH002656 https://www.mathnet.ru/eng/im/v77/i4/p55
|
Statistics & downloads: |
Abstract page: | 437 | Russian version PDF: | 168 | English version PDF: | 8 | References: | 37 | First page: | 9 |
|