Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2013, Volume 77, Issue 4, Pages 742–771
DOI: https://doi.org/10.1070/IM2013v077n04ABEH002659
(Mi im8021)
 

This article is cited in 7 scientific papers (total in 7 papers)

Tori in the Cremona groups

V. L. Popovab

a Steklov Mathematical Institute of the Russian Academy of Sciences
b State University – Higher School of Economics
References:
Abstract: We classify up to conjugacy all subgroups of certain types in the full, affine and special affine Cremona groups and prove that the normalizers of these subgroups are algebraic. As an application, we obtain new results on the linearization problem by generalizing Białynicki-Birula's results of 1966–67 to disconnected groups. We prove fusion theorems for $n$-dimensional tori in the affine and special affine Cremona groups of rank $n$, and introduce and discuss the notions of Jordan decomposition and torsion primes for the Cremona groups.
Keywords: Cremona group, affine Cremona group, algebraic torus, diagonalizable algebraic group, conjugate subgroups, fusion theorems, torsion primes.
Received: 01.07.2012
Bibliographic databases:
Document Type: Article
UDC: 512.745.4
MSC: 14E07, 14L17, 14R10
Language: English
Original paper language: Russian
Citation: V. L. Popov, “Tori in the Cremona groups”, Izv. Math., 77:4 (2013), 742–771
Citation in format AMSBIB
\Bibitem{Pop13}
\by V.~L.~Popov
\paper Tori in the Cremona groups
\jour Izv. Math.
\yr 2013
\vol 77
\issue 4
\pages 742--771
\mathnet{http://mi.mathnet.ru//eng/im8021}
\crossref{https://doi.org/10.1070/IM2013v077n04ABEH002659}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3135700}
\zmath{https://zbmath.org/?q=an:06216127}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013IzMat..77..742P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000323747900006}
\elib{https://elibrary.ru/item.asp?id=20425276}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84884630704}
Linking options:
  • https://www.mathnet.ru/eng/im8021
  • https://doi.org/10.1070/IM2013v077n04ABEH002659
  • https://www.mathnet.ru/eng/im/v77/i4/p103
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:693
    Russian version PDF:187
    English version PDF:10
    References:57
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024