Russian Academy of Sciences. Izvestiya Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Izvestiya Mathematics, 1995, Volume 44, Issue 2, Pages 225–246
DOI: https://doi.org/10.1070/IM1995v044n02ABEH001595
(Mi im801)
 

This article is cited in 5 scientific papers (total in 5 papers)

Indentification of the Hilbert function and Poincaré series, and the dimension of modules over filtered rings

V. V. Bavula
References:
Abstract: In this paper it is shown how to reconstruct a Poincaré series from a known Hilbert (integral) function of a graded module over a commutative Noetherian graded ring, and vice versa. The dimension and multiplicity of modules over a filtered ring whose associated graded ring is commutative and Noetherian are introduced. For one class of generalized Weyl algebras that includes the Weyl algebras $A_n$, the Krull dimension is computed, and Bernstein's inequality is proved and strengthened.
Received: 26.03.1992
Bibliographic databases:
UDC: 512.54
MSC: Primary 16S32; Secondary 16P20, 16P40, 16P60, 16P90, 16W50
Language: English
Original paper language: Russian
Citation: V. V. Bavula, “Indentification of the Hilbert function and Poincaré series, and the dimension of modules over filtered rings”, Russian Acad. Sci. Izv. Math., 44:2 (1995), 225–246
Citation in format AMSBIB
\Bibitem{Bav94}
\by V.~V.~Bavula
\paper Indentification of the Hilbert function and Poincar\'e series, and the dimension of modules over filtered rings
\jour Russian Acad. Sci. Izv. Math.
\yr 1995
\vol 44
\issue 2
\pages 225--246
\mathnet{http://mi.mathnet.ru//eng/im801}
\crossref{https://doi.org/10.1070/IM1995v044n02ABEH001595}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1275900}
\zmath{https://zbmath.org/?q=an:0845.16018}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1995IzMat..44..225B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995RB41200002}
Linking options:
  • https://www.mathnet.ru/eng/im801
  • https://doi.org/10.1070/IM1995v044n02ABEH001595
  • https://www.mathnet.ru/eng/im/v58/i2/p19
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024