Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1996, Volume 60, Issue 4, Pages 763–809
DOI: https://doi.org/10.1070/IM1996v060n04ABEH000080
(Mi im80)
 

This article is cited in 11 scientific papers (total in 11 papers)

Some criteria for parabolicity and hyperbolicity of the boundary sets of surfaces

V. M. Miklyukov

Volgograd State University
References:
Abstract: We give criteria for the parabolicity and hyperbolicity of the boundary sets of surfaces $F=(D,ds^2_F)$, where $D$ is a domain in $\mathbb R^n$ and $ds^2_F$ is the square of the length element on $F$. We prove the parabolicity of certain boundary sets located on the graphs of the solutions of equations of minimal surface type. As an example we present a generalized maximum principle for the derivatives of solution of equations of minimal surface type where domains of $\mathbb R^n$ become “narrow” at infinity. We formulate criteria for the parabolicity and hyperbolicity of boundary sets on the graphs of spacelike surfaces in Minkowski space $\mathbb R_1^{n+1}$, and in particular, we obtain an essential strengthening of the theorem of Choi and Treibergs on the hyperbolicity of the graphs of entire solutions of the constant mean curvature equation in $\mathbb R_1^3$.
Received: 21.12.1994
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 1996, Volume 60, Issue 4, Pages 111–158
DOI: https://doi.org/10.4213/im80
Bibliographic databases:
MSC: Primary 53A10, 35J60, 53B30; Secondary 30C65, 30C80, 31B15, 49Q05, 53B25, 58E20
Language: English
Original paper language: Russian
Citation: V. M. Miklyukov, “Some criteria for parabolicity and hyperbolicity of the boundary sets of surfaces”, Izv. RAN. Ser. Mat., 60:4 (1996), 111–158; Izv. Math., 60:4 (1996), 763–809
Citation in format AMSBIB
\Bibitem{Mik96}
\by V.~M.~Miklyukov
\paper Some criteria for parabolicity and hyperbolicity of the boundary sets of surfaces
\jour Izv. RAN. Ser. Mat.
\yr 1996
\vol 60
\issue 4
\pages 111--158
\mathnet{http://mi.mathnet.ru/im80}
\crossref{https://doi.org/10.4213/im80}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1416926}
\zmath{https://zbmath.org/?q=an:1006.53004}
\transl
\jour Izv. Math.
\yr 1996
\vol 60
\issue 4
\pages 763--809
\crossref{https://doi.org/10.1070/IM1996v060n04ABEH000080}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996WC49900003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746985155}
Linking options:
  • https://www.mathnet.ru/eng/im80
  • https://doi.org/10.1070/IM1996v060n04ABEH000080
  • https://www.mathnet.ru/eng/im/v60/i4/p111
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:673
    Russian version PDF:278
    English version PDF:30
    References:79
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024