Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2014, Volume 78, Issue 1, Pages 106–153
DOI: https://doi.org/10.1070/IM2014v078n01ABEH002682
(Mi im7998)
 

This article is cited in 24 scientific papers (total in 24 papers)

Fourier–Jacobi harmonic analysis and approximation of functions

S. S. Platonov

Petrozavodsk State University
References:
Abstract: We use the methods of Fourier–Jacobi harmonic analysis to study problems of the approximation of functions by algebraic polynomials in weighted function spaces on $[-1,1]$. We prove analogues of Jackson's direct theorem for the moduli of smoothness of all orders constructed on the basis of Jacobi generalized translations. The moduli of smoothness are shown to be equivalent to $K$-functionals constructed from Sobolev-type spaces. We define Nikol'skii–Besov spaces for the Jacobi generalized translation and describe them in terms of best approximations. We also prove analogues of some inverse theorems of Stechkin.
Keywords: Fourier–Jacobi harmonic analysis, approximation of functions, generalized translations, Jacobi polynomials, function spaces.
Received: 10.05.2012
Revised: 10.11.2012
Bibliographic databases:
Document Type: Article
UDC: 517.518.8
Language: English
Original paper language: Russian
Citation: S. S. Platonov, “Fourier–Jacobi harmonic analysis and approximation of functions”, Izv. Math., 78:1 (2014), 106–153
Citation in format AMSBIB
\Bibitem{Pla14}
\by S.~S.~Platonov
\paper Fourier--Jacobi harmonic analysis and approximation of functions
\jour Izv. Math.
\yr 2014
\vol 78
\issue 1
\pages 106--153
\mathnet{http://mi.mathnet.ru//eng/im7998}
\crossref{https://doi.org/10.1070/IM2014v078n01ABEH002682}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3204661}
\zmath{https://zbmath.org/?q=an:1296.41006}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2014IzMat..78..106P}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000332236500006}
\elib{https://elibrary.ru/item.asp?id=21276262}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84894720757}
Linking options:
  • https://www.mathnet.ru/eng/im7998
  • https://doi.org/10.1070/IM2014v078n01ABEH002682
  • https://www.mathnet.ru/eng/im/v78/i1/p117
  • This publication is cited in the following 24 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:1068
    Russian version PDF:414
    English version PDF:24
    References:117
    First page:84
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024