Processing math: 100%
Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2013, Volume 77, Issue 3, Pages 541–570
DOI: https://doi.org/10.1070/IM2013v077n03ABEH002648
(Mi im7966)
 

This article is cited in 24 scientific papers (total in 24 papers)

Sobolev metrics on diffeomorphism groups and the derived geometry of spaces of submanifolds

M. Michelia, P. W. Michorb, D. Mumfordc

a Université René Descartes
b University of Vienna
c Brown University
References:
Abstract: Given a finite-dimensional manifold N, the group DiffS(N) of diffeomorphisms diffeomorphism of N which decrease suitably rapidly to the identity, acts on the manifold B(M,N) of submanifolds of N of diffeomorphism-type M, where M is a compact manifold with dimM<dimN. Given the right-invariant weak Riemannian metric on DiffS(N) induced by a quite general operator L:XS(N)Γ(TNvol(N)), we consider the induced weak Riemannian metric on B(M,N) and compute its geodesics and sectional curvature. To do this, we derive a covariant formula for the curvature in finite and infinite dimensions, we show how it makes O'Neill's formula very transparent, and we finally use it to compute the sectional curvature on B(M,N).
Bibliography: 15 titles.
Keywords: robust infinite-dimensional weak Riemannian manifolds, curvature in terms of the cometric, right-invariant Sobolev metrics on diffeomorphism groups, O'Neill's formula, manifold of submanifolds.
Funding agency Grant number
Office of Naval Research N00014-09-1-0256
Austrian Science Fund 21030
National Science Foundation DMS-0704213
DMS-0456253
Received: 16.02.2012
Bibliographic databases:
Document Type: Article
UDC: 514.83+517.988.24
MSC: 58B20, 58D15, 37K65
Language: English
Original paper language: English
Citation: M. Micheli, P. W. Michor, D. Mumford, “Sobolev metrics on diffeomorphism groups and the derived geometry of spaces of submanifolds”, Izv. Math., 77:3 (2013), 541–570
Citation in format AMSBIB
\Bibitem{MicMicMum13}
\by M.~Micheli, P.~W.~Michor, D.~Mumford
\paper Sobolev metrics on diffeomorphism groups and the derived geometry of spaces of submanifolds
\jour Izv. Math.
\yr 2013
\vol 77
\issue 3
\pages 541--570
\mathnet{http://mi.mathnet.ru/eng/im7966}
\crossref{https://doi.org/10.1070/IM2013v077n03ABEH002648}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3098790}
\zmath{https://zbmath.org/?q=an:06196288}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013IzMat..77..541M}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000320769300006}
\elib{https://elibrary.ru/item.asp?id=20359188}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84879907676}
Linking options:
  • https://www.mathnet.ru/eng/im7966
  • https://doi.org/10.1070/IM2013v077n03ABEH002648
  • https://www.mathnet.ru/eng/im/v77/i3/p109
  • This publication is cited in the following 24 articles:
    1. Valentino Magnani, Daniele Tiberio, “The Michor–Mumford Conjecture in Hilbertian H-Type Groups”, J Geom Anal, 35:3 (2025)  crossref
    2. Anis Fradi, Chafik Samir, Ines Adouani, “A New Bayesian Approach to Global Optimization on Parametrized Surfaces in $\mathbb {R}^{3}$”, J Optim Theory Appl, 2024  crossref
    3. Esfandiar Nava-Yazdani, “On geodesics in the spaces of constrained curves”, Differential Geometry and its Applications, 97 (2024), 102209  crossref
    4. Effland A., Heeren B., Rumpf M., Wirth B., “Consistent Curvature Approximation on Riemannian Shape Spaces”, IMA J. Numer. Anal., 42:1 (2022), 78–106  crossref  mathscinet  isi
    5. Ganesh Sundaramoorthi, Anthony Yezzi, Minas Benyamin, “Accelerated Optimization in the PDE Framework: Formulations for the Manifold of Diffeomorphisms”, SIAM J. Imaging Sci., 15:1 (2022), 324  crossref
    6. Helge Glöckner, “Aspects of Differential Calculus Related to Infinite-Dimensional Vector Bundles and Poisson Vector Spaces”, Axioms, 11:5 (2022), 221  crossref
    7. Samir Ch., Huang W., “Coordinate Descent Optimization For One-to-One Correspondence and Supervised Classification of 3D Shapes”, Appl. Math. Comput., 388 (2021), 125539  crossref  mathscinet  isi
    8. Fiorenza D., Van Le H., “Formally Integrable Complex Structures on Higher Dimensional Knot Spaces”, J. Symplectic Geom., 19:3 (2021), 507–529  crossref  mathscinet  isi
    9. Haller S., Vizman C., “Nonlinear Flag Manifolds as Coadjoint Orbits”, Ann. Glob. Anal. Geom., 58:4 (2020), 385–413  crossref  mathscinet  isi  scopus
    10. Peter W. Michor, Advances in Mechanics and Mathematics, 42, Geometric Continuum Mechanics, 2020, 3  crossref
    11. Schumacher H., Wardetzky M., “Variational Convergence of Discrete Minimal Surfaces”, Numer. Math., 141:1 (2019), 173–213  crossref  mathscinet  zmath  isi
    12. Guigui N., Jia Sh., Sermesant M., Pennec X., “Symmetric Algorithmic Components For Shape Analysis With Diffeomorphisms”, Geometric Science of Information, Lecture Notes in Computer Science, 11712, eds. Nielsen F., Barbaresco F., Springer International Publishing Ag, 2019, 759–768  crossref  mathscinet  isi
    13. Martin Bauer, Nicolas Charon, Laurent Younes, Handbook of Numerical Analysis, 20, Processing, Analyzing and Learning of Images, Shapes, and Forms: Part 2, 2019, 613  crossref
    14. D. Tward, M. Miller, A. Trouve, L. Younes, “Parametric surface diffeomorphometry for low dimensional embeddings of dense segmentations and imagery”, IEEE Trans. Pattern Anal. Mach. Intell., 39:6 (2017), 1195–1208  crossref  isi  scopus
    15. B. Charlier, N. Charon, A. Trouvé, “The Fshape framework for the variability analysis of functional shapes”, Found. Comput. Math., 17:2 (2017), 287–357  crossref  mathscinet  zmath  isi  scopus
    16. P. Balseiro, T. J. Stuchi, A. Cabrera, J. Koiller, “About simple variational splines from the Hamiltonian viewpoint”, J. Geom. Mech., 9:3, SI (2017), 257–290  crossref  mathscinet  zmath  isi  scopus
    17. M. I. Miller, A. Trouve, L. Younes, “Hamiltonian systems and optimal control in computational anatomy: 100 years since D'Arcy Thompson”, Annual Review of Biomedical Engineering, Biomedical Engineering, 17 (2015), 447–509, Annual Reviews  crossref  mathscinet  isi  scopus
    18. Martins Bruveris, Darryl D. Holm, Fields Institute Communications, 73, Geometry, Mechanics, and Dynamics, 2015, 19  crossref
    19. M. Bauer, M. Bruveris, P. W. Michor, “Overview of the geometries of shape spaces and diffeomorphism groups”, J. Math. Imaging Vision, 50:1-2 (2014), 60–97  crossref  mathscinet  zmath  isi  elib  scopus
    20. M. Bauer, M. Bruveris, P. W. Michor, “Homogeneous Sobolev metric of order one on diffeomorphism groups on real line”, J. Nonlinear Sci., 24:5 (2014), 769–808  crossref  mathscinet  zmath  adsnasa  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:743
    Russian version PDF:254
    English version PDF:29
    References:95
    First page:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025