Abstract:
Given a finite-dimensional manifold N, the group DiffS(N) of diffeomorphisms diffeomorphism of N which decrease suitably rapidly to the identity, acts on the manifold B(M,N) of submanifolds of N of diffeomorphism-type M, where M is a compact manifold with dimM<dimN. Given the right-invariant weak Riemannian metric on DiffS(N) induced
by a quite general operator L:XS(N)→Γ(T∗N⊗vol(N)),
we consider the induced weak Riemannian metric on B(M,N) and compute its geodesics and sectional curvature.
To do this, we derive a covariant formula for the curvature in finite and infinite dimensions, we show how
it makes O'Neill's formula very transparent, and we finally use it to compute the sectional curvature on B(M,N).
Bibliography: 15 titles.
Keywords:
robust infinite-dimensional weak Riemannian manifolds, curvature in terms of the cometric, right-invariant Sobolev metrics on diffeomorphism groups, O'Neill's formula, manifold of submanifolds.
Citation:
M. Micheli, P. W. Michor, D. Mumford, “Sobolev metrics on diffeomorphism groups and the derived geometry of spaces of submanifolds”, Izv. Math., 77:3 (2013), 541–570
\Bibitem{MicMicMum13}
\by M.~Micheli, P.~W.~Michor, D.~Mumford
\paper Sobolev metrics on diffeomorphism groups and the derived geometry of spaces of submanifolds
\jour Izv. Math.
\yr 2013
\vol 77
\issue 3
\pages 541--570
\mathnet{http://mi.mathnet.ru/eng/im7966}
\crossref{https://doi.org/10.1070/IM2013v077n03ABEH002648}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3098790}
\zmath{https://zbmath.org/?q=an:06196288}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013IzMat..77..541M}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000320769300006}
\elib{https://elibrary.ru/item.asp?id=20359188}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84879907676}
Linking options:
https://www.mathnet.ru/eng/im7966
https://doi.org/10.1070/IM2013v077n03ABEH002648
https://www.mathnet.ru/eng/im/v77/i3/p109
This publication is cited in the following 24 articles:
Valentino Magnani, Daniele Tiberio, “The Michor–Mumford Conjecture in Hilbertian H-Type Groups”, J Geom Anal, 35:3 (2025)
Anis Fradi, Chafik Samir, Ines Adouani, “A New Bayesian Approach to Global Optimization on Parametrized Surfaces in $\mathbb {R}^{3}$”, J Optim Theory Appl, 2024
Esfandiar Nava-Yazdani, “On geodesics in the spaces of constrained curves”, Differential Geometry and its Applications, 97 (2024), 102209
Effland A., Heeren B., Rumpf M., Wirth B., “Consistent Curvature Approximation on Riemannian Shape Spaces”, IMA J. Numer. Anal., 42:1 (2022), 78–106
Ganesh Sundaramoorthi, Anthony Yezzi, Minas Benyamin, “Accelerated Optimization in the PDE Framework: Formulations for the Manifold of Diffeomorphisms”, SIAM J. Imaging Sci., 15:1 (2022), 324
Helge Glöckner, “Aspects of Differential Calculus Related to Infinite-Dimensional Vector Bundles and Poisson Vector Spaces”, Axioms, 11:5 (2022), 221
Samir Ch., Huang W., “Coordinate Descent Optimization For One-to-One Correspondence and Supervised Classification of 3D Shapes”, Appl. Math. Comput., 388 (2021), 125539
Fiorenza D., Van Le H., “Formally Integrable Complex Structures on Higher Dimensional Knot Spaces”, J. Symplectic Geom., 19:3 (2021), 507–529
Haller S., Vizman C., “Nonlinear Flag Manifolds as Coadjoint Orbits”, Ann. Glob. Anal. Geom., 58:4 (2020), 385–413
Peter W. Michor, Advances in Mechanics and Mathematics, 42, Geometric Continuum Mechanics, 2020, 3
Schumacher H., Wardetzky M., “Variational Convergence of Discrete Minimal Surfaces”, Numer. Math., 141:1 (2019), 173–213
Guigui N., Jia Sh., Sermesant M., Pennec X., “Symmetric Algorithmic Components For Shape Analysis With Diffeomorphisms”, Geometric Science of Information, Lecture Notes in Computer Science, 11712, eds. Nielsen F., Barbaresco F., Springer International Publishing Ag, 2019, 759–768
Martin Bauer, Nicolas Charon, Laurent Younes, Handbook of Numerical Analysis, 20, Processing, Analyzing and Learning of Images, Shapes, and Forms: Part 2, 2019, 613
D. Tward, M. Miller, A. Trouve, L. Younes, “Parametric surface diffeomorphometry for low dimensional embeddings of dense segmentations and imagery”, IEEE Trans. Pattern Anal. Mach. Intell., 39:6 (2017), 1195–1208
B. Charlier, N. Charon, A. Trouvé, “The Fshape framework for the variability analysis of functional shapes”, Found. Comput. Math., 17:2 (2017), 287–357
P. Balseiro, T. J. Stuchi, A. Cabrera, J. Koiller, “About simple variational splines from the Hamiltonian viewpoint”, J. Geom. Mech., 9:3, SI (2017), 257–290
M. I. Miller, A. Trouve, L. Younes, “Hamiltonian systems and optimal control in computational anatomy: 100 years since D'Arcy Thompson”, Annual Review of Biomedical Engineering, Biomedical Engineering, 17 (2015), 447–509, Annual Reviews
Martins Bruveris, Darryl D. Holm, Fields Institute Communications, 73, Geometry, Mechanics, and Dynamics, 2015, 19
M. Bauer, M. Bruveris, P. W. Michor, “Overview of the geometries of shape spaces and diffeomorphism groups”, J. Math. Imaging Vision, 50:1-2 (2014), 60–97
M. Bauer, M. Bruveris, P. W. Michor, “Homogeneous Sobolev metric of order one on diffeomorphism groups on real line”, J. Nonlinear Sci., 24:5 (2014), 769–808