Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2013, Volume 77, Issue 3, Pages 541–570
DOI: https://doi.org/10.1070/IM2013v077n03ABEH002648
(Mi im7966)
 

This article is cited in 23 scientific papers (total in 23 papers)

Sobolev metrics on diffeomorphism groups and the derived geometry of spaces of submanifolds

M. Michelia, P. W. Michorb, D. Mumfordc

a Université René Descartes
b University of Vienna
c Brown University
References:
Abstract: Given a finite-dimensional manifold $N$, the group $\operatorname{Diff}_{\mathcal S}(N)$ of diffeomorphisms diffeomorphism of $N$ which decrease suitably rapidly to the identity, acts on the manifold $B(M,N)$ of submanifolds of $N$ of diffeomorphism-type $M$, where $M$ is a compact manifold with $\operatorname{dim} M<\operatorname{dim} N$. Given the right-invariant weak Riemannian metric on $\operatorname{Diff}_{\mathcal S}(N)$ induced by a quite general operator $L\colon \mathfrak X_{\mathcal S}(N)\to \Gamma(T^*N\otimes\operatorname{vol}(N))$, we consider the induced weak Riemannian metric on $B(M,N)$ and compute its geodesics and sectional curvature. To do this, we derive a covariant formula for the curvature in finite and infinite dimensions, we show how it makes O'Neill's formula very transparent, and we finally use it to compute the sectional curvature on $B(M,N)$.
Bibliography: 15 titles.
Keywords: robust infinite-dimensional weak Riemannian manifolds, curvature in terms of the cometric, right-invariant Sobolev metrics on diffeomorphism groups, O'Neill's formula, manifold of submanifolds.
Funding agency Grant number
Office of Naval Research N00014-09-1-0256
Austrian Science Fund 21030
National Science Foundation DMS-0704213
DMS-0456253
Received: 16.02.2012
Bibliographic databases:
Document Type: Article
UDC: 514.83+517.988.24
MSC: 58B20, 58D15, 37K65
Language: English
Original paper language: English
Citation: M. Micheli, P. W. Michor, D. Mumford, “Sobolev metrics on diffeomorphism groups and the derived geometry of spaces of submanifolds”, Izv. Math., 77:3 (2013), 541–570
Citation in format AMSBIB
\Bibitem{MicMicMum13}
\by M.~Micheli, P.~W.~Michor, D.~Mumford
\paper Sobolev metrics on diffeomorphism groups and the derived geometry of spaces of submanifolds
\jour Izv. Math.
\yr 2013
\vol 77
\issue 3
\pages 541--570
\mathnet{http://mi.mathnet.ru//eng/im7966}
\crossref{https://doi.org/10.1070/IM2013v077n03ABEH002648}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3098790}
\zmath{https://zbmath.org/?q=an:06196288}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013IzMat..77..541M}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000320769300006}
\elib{https://elibrary.ru/item.asp?id=20359188}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84879907676}
Linking options:
  • https://www.mathnet.ru/eng/im7966
  • https://doi.org/10.1070/IM2013v077n03ABEH002648
  • https://www.mathnet.ru/eng/im/v77/i3/p109
  • This publication is cited in the following 23 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024