|
Эта публикация цитируется в 23 научных статьях (всего в 23 статьях)
Sobolev metrics on diffeomorphism groups and the derived geometry of spaces of submanifolds
M. Michelia, P. W. Michorb, D. Mumfordc a Université René Descartes
b University of Vienna
c Brown University
Аннотация:
Given a finite-dimensional manifold $N$, the group $\operatorname{Diff}_{\mathcal S}(N)$ of diffeomorphisms diffeomorphism of $N$ which decrease suitably rapidly to the identity, acts on the manifold $B(M,N)$ of submanifolds of $N$ of diffeomorphism-type $M$, where $M$ is a compact manifold with $\operatorname{dim} M<\operatorname{dim} N$. Given the right-invariant weak Riemannian metric on $\operatorname{Diff}_{\mathcal S}(N)$ induced
by a quite general operator $L\colon \mathfrak X_{\mathcal S}(N)\to \Gamma(T^*N\otimes\operatorname{vol}(N))$,
we consider the induced weak Riemannian metric on $B(M,N)$ and compute its geodesics and sectional curvature.
To do this, we derive a covariant formula for the curvature in finite and infinite dimensions, we show how
it makes O'Neill's formula very transparent, and we finally use it to compute the sectional curvature on $B(M,N)$.
Bibliography: 15 titles.
Ключевые слова:
robust infinite-dimensional weak Riemannian manifolds, curvature in terms of the cometric, right-invariant Sobolev metrics on diffeomorphism groups, O'Neill's formula, manifold of submanifolds.
Поступило в редакцию: 16.02.2012
Образец цитирования:
M. Micheli, P. W. Michor, D. Mumford, “Sobolev metrics on diffeomorphism groups and the derived geometry of spaces of submanifolds”, Изв. РАН. Сер. матем., 77:3 (2013), 109–138; Izv. Math., 77:3 (2013), 541–570
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/im7966https://doi.org/10.4213/im7966 https://www.mathnet.ru/rus/im/v77/i3/p109
|
Статистика просмотров: |
Страница аннотации: | 664 | PDF русской версии: | 226 | PDF английской версии: | 22 | Список литературы: | 77 | Первая страница: | 29 |
|