Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1996, Volume 60, Issue 4, Pages 695–761
DOI: https://doi.org/10.1070/IM1996v060n04ABEH000079
(Mi im79)
 

This article is cited in 35 scientific papers (total in 35 papers)

On formulae for the class number of real Abelian fields

L. V. Kuz'minab

a Russian Research Centre "Kurchatov Institute"
b Information Technologies Institute
References:
Abstract: For a given real Abelian field $k$ and a given prime natural number $\ell$ we obtain an index formula for the order of the group $\operatorname{Cl}(k)_{\ell,\varphi}$, where $\operatorname{Cl}(k)_{\ell}$ is the $\ell$-component of the class group of $k$ $\operatorname{Cl}(k)_{\ell,\varphi}$ denotes the $\varphi$-component of $\operatorname{Cl}(k)_\ell$ corresponding to a ${\mathbf Q}_\ell$-irreducible character $\varphi$ of the Galois group $G(k/{\mathbf Q})$ that is trivial on the Sylow $\ell$-subgroup of $G(k/{\mathbf Q})$. This result generalizes a conjecture of Gras. The proofs rely on the “main conjecture” of Iwasawa theory.
Received: 14.11.1995
Russian version:
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 1996, Volume 60, Issue 4, Pages 43–110
DOI: https://doi.org/10.4213/im79
Bibliographic databases:
MSC: Primary 11R20, 11R29; Secondary 11R23
Language: English
Original paper language: Russian
Citation: L. V. Kuz'min, “On formulae for the class number of real Abelian fields”, Izv. RAN. Ser. Mat., 60:4 (1996), 43–110; Izv. Math., 60:4 (1996), 695–761
Citation in format AMSBIB
\Bibitem{Kuz96}
\by L.~V.~Kuz'min
\paper On formulae for the class number of real Abelian fields
\jour Izv. RAN. Ser. Mat.
\yr 1996
\vol 60
\issue 4
\pages 43--110
\mathnet{http://mi.mathnet.ru/im79}
\crossref{https://doi.org/10.4213/im79}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1416925}
\zmath{https://zbmath.org/?q=an:1007.11065}
\elib{https://elibrary.ru/item.asp?id=13233200}
\transl
\jour Izv. Math.
\yr 1996
\vol 60
\issue 4
\pages 695--761
\crossref{https://doi.org/10.1070/IM1996v060n04ABEH000079}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996WC49900002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0000224498}
Linking options:
  • https://www.mathnet.ru/eng/im79
  • https://doi.org/10.1070/IM1996v060n04ABEH000079
  • https://www.mathnet.ru/eng/im/v60/i4/p43
  • This publication is cited in the following 35 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:414
    Russian version PDF:240
    English version PDF:40
    References:55
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024