Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2013, Volume 77, Issue 2, Pages 407–434
DOI: https://doi.org/10.1070/IM2013v077n02ABEH002641
(Mi im7808)
 

This article is cited in 52 scientific papers (total in 52 papers)

Approximation of functions in $L^{p(x)}_{2\pi}$ by trigonometric polynomials

I. I. Sharapudinov

South Mathematical Institute of VSC RAS
References:
Abstract: We consider the Lebesgue space $L^{p(x)}_{2\pi}$ with variable exponent $p(x)$. It consists of measurable functions $f(x)$ for which the integral $\int_0^{2\pi}|f(x)|^{p(x)}\,dx$ exists. We establish an analogue of Jackson's first theorem in the case when the $2\pi$-periodic variable exponent $p(x)\geqslant1$ satisfies the condition
\begin{equation*} |p(x')-p(x'')|\ln\frac{2\pi}{|x'-x''|}=O(1),\qquad x',x''\in[-\pi,\pi]. \end{equation*}
Under the additional assumption $p_-=\min_x p(x)>1$ we also get an analogue of Jackson's second theorem. We establish an $L^{p(x)}_{2\pi}$-analogue of Bernstein's estimate for the derivative of a trigonometric polynomial and use it to prove an inverse theorem for the analogues of the Lipschitz classes $\mathrm{Lip}(\alpha,M)_{p(\,\cdot\,)}\subset L^{p(x)}_{2\pi}$ for $0<\alpha<1$. Thus we establish direct and inverse theorems of the theory of approximation by trigonometric polynomials in the classes $\mathrm{Lip}(\alpha,M)_{p(\,\cdot\,)}$. In the definition of the modulus of continuity of a function $f(x)\in L^{p(x)}_{2\pi}$, we replace the ordinary shift $f^h(x)=f(x+h)$ by an averaged shift determined by Steklov's function $s_h(f)(x)=\frac{1}{h}\int_0^hf(x+t)\,dt$.
Keywords: Lebesgue and Sobolev spaces with variable exponent, approximation by trigonometric polynomials, direct and inverse theorems, modulus of continuity.
Funding agency Grant number
Russian Foundation for Basic Research 10-01-00191-а
Received: 29.07.2011
Bibliographic databases:
Document Type: Article
UDC: 517.587
MSC: 42A10, 42B25, 46E30
Language: English
Original paper language: Russian
Citation: I. I. Sharapudinov, “Approximation of functions in $L^{p(x)}_{2\pi}$ by trigonometric polynomials”, Izv. Math., 77:2 (2013), 407–434
Citation in format AMSBIB
\Bibitem{Sha13}
\by I.~I.~Sharapudinov
\paper Approximation of functions in~$L^{p(x)}_{2\pi}$ by trigonometric polynomials
\jour Izv. Math.
\yr 2013
\vol 77
\issue 2
\pages 407--434
\mathnet{http://mi.mathnet.ru//eng/im7808}
\crossref{https://doi.org/10.1070/IM2013v077n02ABEH002641}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3097572}
\zmath{https://zbmath.org/?q=an:06170777}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013IzMat..77..407S}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000318276000008}
\elib{https://elibrary.ru/item.asp?id=20359177}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84877060256}
Linking options:
  • https://www.mathnet.ru/eng/im7808
  • https://doi.org/10.1070/IM2013v077n02ABEH002641
  • https://www.mathnet.ru/eng/im/v77/i2/p197
  • This publication is cited in the following 52 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024