Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2012, Volume 76, Issue 6, Pages 1116–1149
DOI: https://doi.org/10.1070/IM2012v076n06ABEH002617
(Mi im7796)
 

This article is cited in 6 scientific papers (total in 6 papers)

Dissipative effects in a linear Lagrangian system with infinitely many degrees of freedom

A. V. Dymov

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We consider the problem of potential interaction between a finite-dimensional linear Lagrangian system and an infinite-dimensional one (a system of linear oscillators and a thermostat). We study the final dynamics of the system. Under natural assumptions, this dynamics turns out to be very simple and admits an explicit description because the thermostat produces an effective dissipation despite the energy conservation and the Lagrangian nature of the system. We use the methods of [1], where the final dynamics of the finite-dimensional subsystem is studied in the case when it has one degree of freedom and a linear potential or (under additional assumptions) polynomial potential. We consider the case of finite-dimensional subsystems with arbitrarily many degrees of freedom and a linear potential and study the final dynamics of the system of oscillators and the thermostat. The necessary assertions from [1] are given with proofs adapted to the present situation.
Keywords: Lagrangian systems, Hamiltonian systems, systems with infinitely many degrees of freedom, final dynamics.
Received: 18.05.2011
Revised: 29.12.2011
Bibliographic databases:
Document Type: Article
UDC: 517.937+517.938
Language: English
Original paper language: Russian
Citation: A. V. Dymov, “Dissipative effects in a linear Lagrangian system with infinitely many degrees of freedom”, Izv. Math., 76:6 (2012), 1116–1149
Citation in format AMSBIB
\Bibitem{Dym12}
\by A.~V.~Dymov
\paper Dissipative effects in a~linear Lagrangian system with infinitely many degrees of freedom
\jour Izv. Math.
\yr 2012
\vol 76
\issue 6
\pages 1116--1149
\mathnet{http://mi.mathnet.ru//eng/im7796}
\crossref{https://doi.org/10.1070/IM2012v076n06ABEH002617}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3074417}
\zmath{https://zbmath.org/?q=an:1261.37032}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012IzMat..76.1116D}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000312670100003}
\elib{https://elibrary.ru/item.asp?id=20359154}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84871598907}
Linking options:
  • https://www.mathnet.ru/eng/im7796
  • https://doi.org/10.1070/IM2012v076n06ABEH002617
  • https://www.mathnet.ru/eng/im/v76/i6/p45
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024