Russian Academy of Sciences. Izvestiya Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Izvestiya Mathematics, 1995, Volume 45, Issue 1, Pages 55–78
DOI: https://doi.org/10.1070/IM1995v045n01ABEH001635
(Mi im770)
 

This article is cited in 11 scientific papers (total in 11 papers)

On $n$-widths, optimal quadrature formulas, and optimal recovery of functions analytic in a strip

K. Yu. Osipenko
References:
Abstract: Let $H_\infty(D_H)$ be the space of bounded analytic functions in the strip $D_H:=\{z\in\mathbf C:|\operatorname{Im} z|<H\}$. We denote by $\widetilde H_\infty(D_H)$ the set of $2\pi$-periodic functions in $H_\infty(D_H)$, and by $\widetilde H_\infty^{\mathbf R}(D_H)$ the set of functions in $\widetilde H_\infty(D_H)$ that are real on the real axis. For a normed linear space $X$ we set $BX:=\{x\in X:\|x\|\leqslant1\}$. In this paper the exact values of the Kolmogorov $n$-widths $d_{2n}(B\widetilde H_\infty^{\mathbf R}(D_H), L_q[0,2\pi])$, are found for all $1\leqslant q\leqslant\infty$, an optimal quadrature formula is constructed for the class $B\widetilde H_\infty (D_H)$ by using the values of functions defined with an error and it is proved that the unique (to within a shift) optimal system of nodes is given by a uniform net. In addition to this, a number of problems are solved for the optimal recovery of functions and their derivatives in the class $BH_\infty(D_H)$.
Received: 23.02.1993
Bibliographic databases:
UDC: 517.5
MSC: Primary 41A46, 33E05, 30E10; Secondary 41A65, 30D55, 31C05, 41A50, 30D50
Language: English
Original paper language: Russian
Citation: K. Yu. Osipenko, “On $n$-widths, optimal quadrature formulas, and optimal recovery of functions analytic in a strip”, Russian Acad. Sci. Izv. Math., 45:1 (1995), 55–78
Citation in format AMSBIB
\Bibitem{Osi94}
\by K.~Yu.~Osipenko
\paper On~$n$-widths, optimal quadrature formulas, and optimal recovery of functions analytic in a~strip
\jour Russian Acad. Sci. Izv. Math.
\yr 1995
\vol 45
\issue 1
\pages 55--78
\mathnet{http://mi.mathnet.ru//eng/im770}
\crossref{https://doi.org/10.1070/IM1995v045n01ABEH001635}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1307056}
\zmath{https://zbmath.org/?q=an:0839.41015}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?1995IzMat..45...55O}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995TQ08400003}
Linking options:
  • https://www.mathnet.ru/eng/im770
  • https://doi.org/10.1070/IM1995v045n01ABEH001635
  • https://www.mathnet.ru/eng/im/v58/i4/p55
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024