Russian Academy of Sciences. Izvestiya Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Academy of Sciences. Izvestiya Mathematics, 1995, Volume 45, Issue 2, Pages 255–280
DOI: https://doi.org/10.1070/IM1995v045n02ABEH001649
(Mi im759)
 

Approximate functional equation for the product of two Dirichlet $L$-functions

S. A. Gritsenko
References:
Abstract: An approximate functional is derived for $L(s,\chi_1)L(s,\chi_2)$, where $\chi_1$ and $\chi_2$ are primitive Dirichlet characters modulo $k_1$ and $k_2$, and also an approximate functional equation for an analogue of the Hardy–Selberg function.
If $s=1/2+it$, $k_1k_2\leqslant |t|^{1/9 -5\varepsilon}$, then the remainder terms in these formulas are bounded by $O(|t|^{-\varepsilon})$ as $|t|\to\infty$ (where $\varepsilon$ is an arbitrarily small positive number).
Received: 24.02.1994
Bibliographic databases:
UDC: 511
MSC: Primary 11M06; Secondary 11M26, 11M41
Language: English
Original paper language: Russian
Citation: S. A. Gritsenko, “Approximate functional equation for the product of two Dirichlet $L$-functions”, Russian Acad. Sci. Izv. Math., 45:2 (1995), 255–280
Citation in format AMSBIB
\Bibitem{Gri94}
\by S.~A.~Gritsenko
\paper Approximate functional equation for the~product of two Dirichlet $L$-functions
\jour Russian Acad. Sci. Izv. Math.
\yr 1995
\vol 45
\issue 2
\pages 255--280
\mathnet{http://mi.mathnet.ru//eng/im759}
\crossref{https://doi.org/10.1070/IM1995v045n02ABEH001649}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1307309}
\zmath{https://zbmath.org/?q=an:0839.11036}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1995TQ08600002}
Linking options:
  • https://www.mathnet.ru/eng/im759
  • https://doi.org/10.1070/IM1995v045n02ABEH001649
  • https://www.mathnet.ru/eng/im/v58/i5/p26
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025