|
Approximate functional equation for the product of two Dirichlet $L$-functions
S. A. Gritsenko
Abstract:
An approximate functional is derived for $L(s,\chi_1)L(s,\chi_2)$, where $\chi_1$ and $\chi_2$ are primitive Dirichlet characters modulo $k_1$ and $k_2$, and also an approximate functional equation for an analogue of the Hardy–Selberg function.
If $s=1/2+it$, $k_1k_2\leqslant |t|^{1/9 -5\varepsilon}$, then the remainder terms in these formulas are bounded by $O(|t|^{-\varepsilon})$ as $|t|\to\infty$ (where $\varepsilon$ is an arbitrarily small positive number).
Received: 24.02.1994
Citation:
S. A. Gritsenko, “Approximate functional equation for the product of two Dirichlet $L$-functions”, Izv. RAN. Ser. Mat., 58:5 (1994), 26–52; Russian Acad. Sci. Izv. Math., 45:2 (1995), 255–280
Linking options:
https://www.mathnet.ru/eng/im759https://doi.org/10.1070/IM1995v045n02ABEH001649 https://www.mathnet.ru/eng/im/v58/i5/p26
|
Statistics & downloads: |
Abstract page: | 290 | Russian version PDF: | 99 | English version PDF: | 16 | References: | 47 | First page: | 1 |
|