Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2008, Volume 72, Issue 4, Pages 817–844
DOI: https://doi.org/10.1070/IM2008v072n04ABEH002417
(Mi im753)
 

On algebraic cycles on complex Abelian schemes over smooth projective curves

S. G. Tankeev

Vladimir State University
References:
Abstract: If the Hodge conjecture holds for some generic (in the sense of Weil) geometric fibre $X_s$ of an Abelian scheme $\pi\colon X\to C$ over a smooth projective curve $C$, then numerical equivalence of algebraic cycles on $X$ coincides with homological equivalence. The Hodge conjecture for all complex Abelian varieties is equivalent to the standard conjecture $B(X)$ of Lefschetz type on the algebraicity of the Hodge operator $\ast$ for all Abelian schemes $\pi\colon X\to C$ over smooth projective curves. We investigate some properties of the Gauss–Manin connection and Hodge bundles associated with Abelian schemes over smooth projective curves, with applications to the conjectures of Hodge and Tate.
Received: 23.01.2006
Revised: 27.12.2006
Bibliographic databases:
UDC: 512.6
Language: English
Original paper language: Russian
Citation: S. G. Tankeev, “On algebraic cycles on complex Abelian schemes over smooth projective curves”, Izv. Math., 72:4 (2008), 817–844
Citation in format AMSBIB
\Bibitem{Tan08}
\by S.~G.~Tankeev
\paper On algebraic cycles on complex Abelian schemes over smooth projective curves
\jour Izv. Math.
\yr 2008
\vol 72
\issue 4
\pages 817--844
\mathnet{http://mi.mathnet.ru//eng/im753}
\crossref{https://doi.org/10.1070/IM2008v072n04ABEH002417}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2452239}
\zmath{https://zbmath.org/?q=an:1157.14002}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008IzMat..72..817T}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000259374600009}
\elib{https://elibrary.ru/item.asp?id=11161436}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-53349174165}
Linking options:
  • https://www.mathnet.ru/eng/im753
  • https://doi.org/10.1070/IM2008v072n04ABEH002417
  • https://www.mathnet.ru/eng/im/v72/i4/p197
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:458
    Russian version PDF:183
    English version PDF:20
    References:79
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024