Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2010, Volume 74, Issue 1, Pages 189–216
DOI: https://doi.org/10.1070/IM2010v074n01ABEH002485
(Mi im738)
 

This article is cited in 8 scientific papers (total in 8 papers)

Exact asymptotics of Laplace-type Wiener integrals for $L^p$-functionals

V. R. Fatalov
References:
Abstract: We prove theorems on the exact asymptotic behaviour of the integrals
$$ \mathsf{E}\exp\biggl\{u\biggl(\int_0^1|\xi(t)|^p\,dt\biggr)^{\alpha/p}\biggr\}, \quad \mathsf{E}\exp\biggl\{-u\int_0^1|\xi(t)|^p\,dt\biggr\}, \qquad u\to\infty, $$
for $p>0$ and $0<\alpha<2$ for two random processes $\xi(t)$, namely, the Wiener process and the Brownian bridge, and obtain other related results. Our approach is via the Laplace method for infinite-dimensional distributions, namely, Gaussian measures and the occupation time for Markov processes.
Keywords: large deviation, Gaussian process, Markov process, occupation time, covariance operator, generating operator, Schrödinger operator, hypergeometric function.
Received: 28.12.2005
Revised: 19.10.2007
Bibliographic databases:
UDC: 519.2
MSC: Primary 60H05; Secondary 28C20, 60F10, 60J65
Language: English
Original paper language: Russian
Citation: V. R. Fatalov, “Exact asymptotics of Laplace-type Wiener integrals for $L^p$-functionals”, Izv. Math., 74:1 (2010), 189–216
Citation in format AMSBIB
\Bibitem{Fat10}
\by V.~R.~Fatalov
\paper Exact asymptotics of Laplace-type Wiener integrals for $L^p$-functionals
\jour Izv. Math.
\yr 2010
\vol 74
\issue 1
\pages 189--216
\mathnet{http://mi.mathnet.ru//eng/im738}
\crossref{https://doi.org/10.1070/IM2010v074n01ABEH002485}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2655242}
\zmath{https://zbmath.org/?q=an:1188.60026}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010IzMat..74..189F}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000276747800005}
\elib{https://elibrary.ru/item.asp?id=20358714}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77950310576}
Linking options:
  • https://www.mathnet.ru/eng/im738
  • https://doi.org/10.1070/IM2010v074n01ABEH002485
  • https://www.mathnet.ru/eng/im/v74/i1/p197
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:849
    Russian version PDF:219
    English version PDF:21
    References:91
    First page:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024