Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2007, Volume 71, Issue 1, Pages 75–95
DOI: https://doi.org/10.1070/IM2007v071n01ABEH002351
(Mi im736)
 

On necessary conditions for Fourier multipliers of weak type

A. V. Rozhdestvenskii

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We obtain necessary conditions for a bounded function $\varphi$ to be a Fourier multiplier of weak type $\bigl(\psi(L)(G),\psi(L)(G)\bigr)$, where $G=\mathbb R^d$ or $G=\mathbb T^d$, provided that the Young function $\psi(t)$ grows slower than $t\ln^{1/2}t$ as $t$ tends to infinity.
Received: 27.12.2005
Bibliographic databases:
UDC: 517.51
MSC: 42B15
Language: English
Original paper language: Russian
Citation: A. V. Rozhdestvenskii, “On necessary conditions for Fourier multipliers of weak type”, Izv. Math., 71:1 (2007), 75–95
Citation in format AMSBIB
\Bibitem{Roz07}
\by A.~V.~Rozhdestvenskii
\paper On necessary conditions for Fourier multipliers of weak type
\jour Izv. Math.
\yr 2007
\vol 71
\issue 1
\pages 75--95
\mathnet{http://mi.mathnet.ru//eng/im736}
\crossref{https://doi.org/10.1070/IM2007v071n01ABEH002351}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2477275}
\zmath{https://zbmath.org/?q=an:05241936}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000246660400005}
\elib{https://elibrary.ru/item.asp?id=9450958}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-34249823969}
Linking options:
  • https://www.mathnet.ru/eng/im736
  • https://doi.org/10.1070/IM2007v071n01ABEH002351
  • https://www.mathnet.ru/eng/im/v71/i1/p79
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:506
    Russian version PDF:211
    English version PDF:29
    References:80
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024