|
This article is cited in 1 scientific paper (total in 1 paper)
The thermodynamic formalism for the de Rham function: increment method
M. Ben Slimane College of Science, King Saud University
Abstract:
We study the de Rham function: the unique continuous (nowhere differentiable)
function $F \in L^1(\mathbb{R})$ with $\int F(x)\,dx=1$ satisfying the
functional equation $F(x)=F(3x)+\frac{1}{3}\bigl(F(3x-1)+F(3x+1)
\bigr)+\frac{2}{3}\bigl(F(3x-2)+F(3x+2)\bigr)$.
We show that its pointwise Hölder regularity
$\alpha(x)=\liminf_{h\to 0}\frac{\log(|F(x+h)-F(x)|)}{\log |h|}$
differs widely from point to point,
and the values of $\alpha(x)$ fill an interval parametrizing the
fractal sets $E^{(\alpha)}$, where $E^{(\alpha)}$ is the set of points $x$
with Hölder exponent $\alpha(x)=\alpha$. We also prove that the
thermodynamic formalism (increment method) holds for the de Rham function:
we have a heuristic formula $d(\alpha)=\inf_{q >0}(\alpha q-\zeta(q)+1)$
relating the order of decay of $\int_{\mathbb{R}}|F(x+h)-F(x)|^{q}\,dx
\sim |h|^{\zeta(q)}$ as $h \to 0$ with the Hausdorff dimension $d(\alpha)$
of $E^{(\alpha)}$.
Keywords:
Hölder regularity, Hausdorff dimension, increments, thermodynamic formalism.
Received: 06.03.2011
Citation:
M. Ben Slimane, “The thermodynamic formalism for the de Rham function: increment method”, Izv. Math., 76:3 (2012), 431–445
Linking options:
https://www.mathnet.ru/eng/im7332https://doi.org/10.1070/IM2012v076n03ABEH002590 https://www.mathnet.ru/eng/im/v76/i3/p3
|
|