Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2012, Volume 76, Issue 3, Pages 431–445
DOI: https://doi.org/10.1070/IM2012v076n03ABEH002590
(Mi im7332)
 

This article is cited in 1 scientific paper (total in 1 paper)

The thermodynamic formalism for the de Rham function: increment method

M. Ben Slimane

College of Science, King Saud University
References:
Abstract: We study the de Rham function: the unique continuous (nowhere differentiable) function $F \in L^1(\mathbb{R})$ with $\int F(x)\,dx=1$ satisfying the functional equation $F(x)=F(3x)+\frac{1}{3}\bigl(F(3x-1)+F(3x+1) \bigr)+\frac{2}{3}\bigl(F(3x-2)+F(3x+2)\bigr)$. We show that its pointwise Hölder regularity $\alpha(x)=\liminf_{h\to 0}\frac{\log(|F(x+h)-F(x)|)}{\log |h|}$ differs widely from point to point, and the values of $\alpha(x)$ fill an interval parametrizing the fractal sets $E^{(\alpha)}$, where $E^{(\alpha)}$ is the set of points $x$ with Hölder exponent $\alpha(x)=\alpha$. We also prove that the thermodynamic formalism (increment method) holds for the de Rham function: we have a heuristic formula $d(\alpha)=\inf_{q >0}(\alpha q-\zeta(q)+1)$ relating the order of decay of $\int_{\mathbb{R}}|F(x+h)-F(x)|^{q}\,dx \sim |h|^{\zeta(q)}$ as $h \to 0$ with the Hausdorff dimension $d(\alpha)$ of $E^{(\alpha)}$.
Keywords: Hölder regularity, Hausdorff dimension, increments, thermodynamic formalism.
Received: 06.03.2011
Bibliographic databases:
Document Type: Article
UDC: 517.589
Language: English
Original paper language: Russian
Citation: M. Ben Slimane, “The thermodynamic formalism for the de Rham function: increment method”, Izv. Math., 76:3 (2012), 431–445
Citation in format AMSBIB
\Bibitem{Ben12}
\by M.~Ben Slimane
\paper The thermodynamic formalism for the de~Rham function: increment method
\jour Izv. Math.
\yr 2012
\vol 76
\issue 3
\pages 431--445
\mathnet{http://mi.mathnet.ru//eng/im7332}
\crossref{https://doi.org/10.1070/IM2012v076n03ABEH002590}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2978106}
\zmath{https://zbmath.org/?q=an:06062357}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2012IzMat..76..431B}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000305690000001}
\elib{https://elibrary.ru/item.asp?id=20358842}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84862688991}
Linking options:
  • https://www.mathnet.ru/eng/im7332
  • https://doi.org/10.1070/IM2012v076n03ABEH002590
  • https://www.mathnet.ru/eng/im/v76/i3/p3
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024