Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2007, Volume 71, Issue 5, Pages 1001–1048
DOI: https://doi.org/10.1070/IM2007v071n05ABEH002379
(Mi im720)
 

This article is cited in 53 scientific papers (total in 53 papers)

Bessel harmonic analysis and approximation of functions on the half-line

S. S. Platonov

Petrozavodsk State University
References:
Abstract: We study problems of approximation of functions on $[0, +\infty)$ in the metric of $L_p$ with power weight using generalized Bessel shifts. We prove analogues of direct Jackson theorems for the modulus of smoothness of arbitrary order defined in terms of generalized Bessel shifts. We establish the equivalence of the modulus of smoothness and the $K$-functional. We define function spaces of Nikol'skii–Besov type and describe them in terms of best approximations. As a tool for approximation, we use a certain class of entire functions of exponential type. In this class, we prove analogues of Bernstein's inequality and others for the Bessel differential operator and its fractional powers. The main tool we use to solve these problems is Bessel harmonic analysis.
Received: 06.12.2005
Bibliographic databases:
UDC: 517.518
MSC: 41A30
Language: English
Original paper language: Russian
Citation: S. S. Platonov, “Bessel harmonic analysis and approximation of functions on the half-line”, Izv. Math., 71:5 (2007), 1001–1048
Citation in format AMSBIB
\Bibitem{Pla07}
\by S.~S.~Platonov
\paper Bessel harmonic analysis and approximation of functions on the half-line
\jour Izv. Math.
\yr 2007
\vol 71
\issue 5
\pages 1001--1048
\mathnet{http://mi.mathnet.ru//eng/im720}
\crossref{https://doi.org/10.1070/IM2007v071n05ABEH002379}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2362876}
\zmath{https://zbmath.org/?q=an:1135.41015}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000252092800005}
\elib{https://elibrary.ru/item.asp?id=9597433}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-37549030107}
Linking options:
  • https://www.mathnet.ru/eng/im720
  • https://doi.org/10.1070/IM2007v071n05ABEH002379
  • https://www.mathnet.ru/eng/im/v71/i5/p149
  • This publication is cited in the following 53 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024