Loading [MathJax]/jax/output/SVG/config.js
Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2007, Volume 71, Issue 6, Pages 1193–1252
DOI: https://doi.org/10.1070/IM2007v071n06ABEH002387
(Mi im711)
 

This article is cited in 16 scientific papers (total in 16 papers)

Multiphase homogenized diffusion models for problems with several parameters

G. V. Sandrakov

National Taras Shevchenko University of Kyiv
References:
Abstract: We deal with the homogenization of initial-boundary-value problems for parabolic equations with asymptotically degenerate rapidly oscillating periodic coefficients, which are models for diffusion processes in a strongly inhomogeneous medium. The solutions of these problems depend on a finite positive parameter and two small positive parameters. We obtain homogenized initial-boundary-value problems (whose solutions determine approximate asymptotics for solutions of the problems under consideration) and prove estimates for the accuracy of these approximations. The homogenized problems are initial-boundary-value problems for integro-differential equations whose solutions depend on additional positive parameters: the intensity of diffusion exchange and the impulse exchange. In the general case, the homogenized equations form a system of equations coupled through the exchange coefficients and define multiphase mathematical models of diffusion for a homogenized (limiting) medium. We consider the spectral properties of some homogenized problems. We also prove assertions on asymptotic reductions of the homogenized problems under additional hypothesis on the limiting behaviour of the exchange parameters.
Received: 22.03.2004
Revised: 06.12.2006
Bibliographic databases:
UDC: 517.956.8
MSC: 35B27
Language: English
Original paper language: Russian
Citation: G. V. Sandrakov, “Multiphase homogenized diffusion models for problems with several parameters”, Izv. Math., 71:6 (2007), 1193–1252
Citation in format AMSBIB
\Bibitem{San07}
\by G.~V.~Sandrakov
\paper Multiphase homogenized diffusion models for problems with several parameters
\jour Izv. Math.
\yr 2007
\vol 71
\issue 6
\pages 1193--1252
\mathnet{http://mi.mathnet.ru/eng/im711}
\crossref{https://doi.org/10.1070/IM2007v071n06ABEH002387}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2378698}
\zmath{https://zbmath.org/?q=an:1145.35018}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000252675200006}
\elib{https://elibrary.ru/item.asp?id=9602120}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-38849111815}
Linking options:
  • https://www.mathnet.ru/eng/im711
  • https://doi.org/10.1070/IM2007v071n06ABEH002387
  • https://www.mathnet.ru/eng/im/v71/i6/p119
  • This publication is cited in the following 16 articles:
    1. V. V. Vlasov, N. A. Rautian, “Investigation of Integro-Differential Equations by Methods of Spectral Theory”, J Math Sci, 278:1 (2024), 55  crossref
    2. Gennadiy V. SANDRAKOV, Computational Methods and Mathematical Modeling in Cyberphysics and Engineering Applications 1, 2024, 69  crossref
    3. Gennadiy V. Sandrakov, Lecture Notes in Networks and Systems, 1091, Mathematical Modeling and Simulation of Systems, 2024, 19  crossref
    4. Gennadiy Sandrakov, “Homogenization and modeling of wave processes in composites with a periodic structure”, PMMIT, 2023, no. 37, 108  crossref
    5. G. V. Sandrakov, S. I. Lyashko, V. V. Semenov, “Simulation of Filtration Processes for Inhomogeneous Media and Homogenization*”, Cybern Syst Anal, 59:2 (2023), 212  crossref
    6. G. V. Sandrakov, “MODELING OF WAVE PROCESSES IN POROUS MEDIA AND ASYMPTOTIC EXPANSIONS”, JNAM, 2022, no. 2, 132  crossref
    7. G. V. Sandrakov, “COMPUTATIONAL ALGORITHMS FOR MULTIPHASE HYDRODYNAMICS MODELS AND FILTRATION”, JNAM, 2022, no. 1, 46  crossref
    8. V. V. Vlasov, N. A. Rautian, “Issledovanie integrodifferentsialnykh uravnenii metodami spektralnoi teorii”, Posvyaschaetsya pamyati professora N.D. Kopachevskogo, SMFN, 67, no. 2, Rossiiskii universitet druzhby narodov, M., 2021, 255–284  mathnet  crossref
    9. A.L. Gulyanitskii, G.V. Sandrakov, “Rozv'yaznіst rіvnyan u zgortkakh, scho vinikayut pri oserednennі”, Dopov. Nac. akad. nauk Ukr., 2021, no. 6, 15  crossref
    10. G. V. Sandrakov, A. L. Hulianytskyi, “SOLVABILITY OF HOMOGENIZED PROBLEMS WITH CONVOLUTIONS FOR WEAKLY POROUS MEDIA”, JNAM, 2020, no. 2 (134), 59  crossref
    11. G. V. Sandrakov, “HOMOGENIZED MODELS FOR MULTIPHASE DIFFUSION IN POROUS MEDIA”, JNAM, 2019, no. 3 (132), 43  crossref
    12. Victor V. Vlasov, Nadezda A. Rautian, Operator Theory: Advances and Applications, 236, Concrete Operators, Spectral Theory, Operators in Harmonic Analysis and Approximation, 2014, 517  crossref
    13. Vlasov V.V., Rautian N.A., “On the Asymptotic Behavior of Solutions of Integro-Differential Equations in a Hilbert Space”, Differ. Equ., 49:6 (2013), 718–730  crossref  mathscinet  zmath  isi  elib  scopus
    14. V. V. Vlasov, N. A. Rautian, A. S. Shamaev, “Spectral analysis and correct solvability of abstract integrodifferential equations arising in thermophysics and acoustics”, Journal of Mathematical Sciences, 190:1 (2013), 34–65  mathnet  crossref  mathscinet
    15. Bellieud M., “Torsion effects in elastic composites with high contrast”, SIAM J. Math. Anal., 41:6 (2010), 2514–2553  crossref  mathscinet  zmath  isi  scopus
    16. T. A. Mel'nik, O. A. Sivak, “Asymptotic analysis of a parabolic semilinear problem with nonlinear boundary multiphase interactions in a perforated domain”, J Math Sci, 164:3 (2010), 427  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:760
    Russian version PDF:280
    English version PDF:69
    References:110
    First page:9
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025