Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2008, Volume 72, Issue 4, Pages 689–716
DOI: https://doi.org/10.1070/IM2008v072n04ABEH002415
(Mi im708)
 

This article is cited in 4 scientific papers (total in 4 papers)

The Robinson–Schensted–Knuth correspondence and the bijections of commutativity and associativity

V. I. Danilov, G. A. Koshevoy

Central Economics and Mathematics Institute, RAS
References:
Abstract: The bijections of associativity and commutativity arise from symmetries of the Littlewood–Richardson coefficients. We define these bijections in terms of arrays and show that they coincide with analogous bijections defined in terms of discretely concave functions using the octahedron recurrence as well as with bijections defined in terms of Young tableaux. The main ingredient in the proof of their coincidence is a functional version of the Robinson–Schensted–Knuth correspondence.
Received: 01.04.2005
Revised: 15.05.2007
Bibliographic databases:
UDC: 512.815.1
MSC: 05E10, 52C07, 26B25
Language: English
Original paper language: Russian
Citation: V. I. Danilov, G. A. Koshevoy, “The Robinson–Schensted–Knuth correspondence and the bijections of commutativity and associativity”, Izv. Math., 72:4 (2008), 689–716
Citation in format AMSBIB
\Bibitem{DanKos08}
\by V.~I.~Danilov, G.~A.~Koshevoy
\paper The Robinson--Schensted--Knuth correspondence and the bijections of commutativity and associativity
\jour Izv. Math.
\yr 2008
\vol 72
\issue 4
\pages 689--716
\mathnet{http://mi.mathnet.ru//eng/im708}
\crossref{https://doi.org/10.1070/IM2008v072n04ABEH002415}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2452234}
\zmath{https://zbmath.org/?q=an:1152.05058}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008IzMat..72..689D}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000259374600004}
\elib{https://elibrary.ru/item.asp?id=11161431}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-53349099867}
Linking options:
  • https://www.mathnet.ru/eng/im708
  • https://doi.org/10.1070/IM2008v072n04ABEH002415
  • https://www.mathnet.ru/eng/im/v72/i4/p67
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:607
    Russian version PDF:272
    English version PDF:28
    References:62
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025