Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2006, Volume 70, Issue 5, Pages 949–974
DOI: https://doi.org/10.1070/IM2006v070n05ABEH002334
(Mi im707)
 

This article is cited in 2 scientific papers (total in 2 papers)

A property of the $\ell$-adic logarithms of units of non-abelian local fields

L. V. Kuz'min

Russian Research Centre "Kurchatov Institute"
References:
Abstract: We continue to examine the finite abelian $\ell$-groups ${\mathcal A}_n^{(p)}$ and ${\mathcal B}_n^{(p)}$, which were introduced in [7] to characterize the bilinear form $U(K_n)\times U(K_n)\to {\mathbb Q}_\ell$, $(x,y)\to {\operatorname{Sp}}_{K_n/{\mathbb Q}_\ell} (\log x\cdot\log y)$, where $K_n$ is an intermediate subfield of the cyclotomic ${\mathbb Z}_\ell$-extension $K_\infty/K$, $K$ is a finite extension of ${\mathbb Q}_\ell$, $U(K_n)$ is the group of units of $K_n$ and $\log$ is the $\ell$-adic logarithm. If $\ell\geqslant 3$ and $K$ is a non-abelian field, we prove that ${\mathcal A}_n^{(p)}\neq 0$ and ${\mathcal B}_n^{(p)}\neq0$ except in the case when $\ell=3$ and the $K$ is a quadratic extension of a cyclotomic field. We also investigate this exceptional case.
Received: 27.04.2005
Bibliographic databases:
UDC: 519.4
MSC: 11S85, 11S25
Language: English
Original paper language: Russian
Citation: L. V. Kuz'min, “A property of the $\ell$-adic logarithms of units of non-abelian local fields”, Izv. Math., 70:5 (2006), 949–974
Citation in format AMSBIB
\Bibitem{Kuz06}
\by L.~V.~Kuz'min
\paper A property of the $\ell$-adic logarithms of units of
non-abelian local fields
\jour Izv. Math.
\yr 2006
\vol 70
\issue 5
\pages 949--974
\mathnet{http://mi.mathnet.ru//eng/im707}
\crossref{https://doi.org/10.1070/IM2006v070n05ABEH002334}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2269710}
\zmath{https://zbmath.org/?q=an:1149.11052}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000243560600005}
\elib{https://elibrary.ru/item.asp?id=9296570}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33846598901}
Linking options:
  • https://www.mathnet.ru/eng/im707
  • https://doi.org/10.1070/IM2006v070n05ABEH002334
  • https://www.mathnet.ru/eng/im/v70/i5/p97
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:420
    Russian version PDF:160
    English version PDF:14
    References:56
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024